An Approach to Charge Stratification in Lean-burn, Spark-ignition Engines PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Approach to Charge Stratification in Lean-burn, Spark-ignition Engines PDF full book. Access full book title An Approach to Charge Stratification in Lean-burn, Spark-ignition Engines by Constantine Arcoumanis. Download full books in PDF and EPUB format.

An Approach to Charge Stratification in Lean-burn, Spark-ignition Engines

An Approach to Charge Stratification in Lean-burn, Spark-ignition Engines PDF Author: Constantine Arcoumanis
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 13

Book Description


An Approach to Charge Stratification in Lean-burn, Spark-ignition Engines

An Approach to Charge Stratification in Lean-burn, Spark-ignition Engines PDF Author: Constantine Arcoumanis
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 13

Book Description


Lean Combustion

Lean Combustion PDF Author: Derek Dunn-Rankin
Publisher: Academic Press
ISBN: 0080550525
Category : Technology & Engineering
Languages : en
Pages : 282

Book Description
Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions, this being particularly important in light of recent and rapid increases in the cost of fossil fuels and concerns over the links between combustion and global climate change. Lean Combustion is an eminently authoritative, reference work on the latest advances in lean combustion technology and systems. It will offer engineers working on combustion equipment and systems both the fundamentals and the latest developments in more efficient fuel usage and in much-sought-after reductions of undesirable emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion and its role in meeting current and future demands on combustion systems. Readers will learn about advances in the understanding of ultra lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion such as slow, difficult ignition and frequent flame extinction. The book will also offer abundant references and examples of recent real-world applications. Covers all major recent developments in lean combustion science and technology, with new applications in both traditional combustion schemes as well as such novel uses as highly preheated and hydrogen-fueled systems Offers techniques for overcoming difficult ignition problems and flame extinction with lean fuel mixtures Covers new developments in lean combustion using high levels of pre-heat and heat re-circulating burners, as well as the active control of lean combustion instabilities

Lean Burn and Stratified Combustion Strategies for Small Utility Engines

Lean Burn and Stratified Combustion Strategies for Small Utility Engines PDF Author: Chandan Mahato
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 164

Book Description
The research presented in this thesis is an effort to improve small engine combustion through the application of lean combustion. The first part of the research is focused on conducting an experimental investigation into the application of lean burn strategy on a single cylinder OHV utility engine to reduce engine-out emissions and at the same time maintain acceptable cyclic variability in combustion. The parameters of interest to investigate cyclic variability in combustion were spark plug variations, load control and charge stratification. The main findings showed that the spark discharge energy had a major influence on engine performance. It was also found that the engine can be operated at a high volumetric efficiency and very lean AFR at 75% and 50% load by the use of fuel injection. This is especially helpful for small engines operating on the EPA B-cycle. The second part of the research deals with the study of a Flat head, also known as side valve (SV) engine platform. A novel approach to lean combustion in a flat head engine is proposed by directly injecting gasoline fuel into the combustion chamber. The main advantage of the direct injection flat head (DIFH) engine over the conventional OHV GDI engine is its simplicity in design, low cost and, greater flexibility in placement of key engine performance hardware in the cylinder head. To first understand the behavior of the in-cylinder air motion, the air-flow structure developing within the combustion chamber was investigated using PIV techniques. The results show that squish is the dominant turbulence generating mean flow structure in the combustion chamber of the DIFH engine. Although the DIFH engine produced about 8 times more UHC emissions as compared to the conventional spark ignited OHV engines, it produced about 5 times less CO emissions as compared to the OHV engine and showed a 16% improvement in brake specific fuel consumption. The current combustion chamber has a dual chamber design exhibiting different combustion mechanisms in both the chambers, causing complex undesirable interactions between key engine performance parameters. Based on these fundamental studies a new combustion chamber design is presented for better performance.

Stratified-charge Operation of a Spark-ignition Engine

Stratified-charge Operation of a Spark-ignition Engine PDF Author: Lloyd Willard Jedeka
Publisher:
ISBN:
Category :
Languages : en
Pages : 104

Book Description


Automotive Spark-Ignited Direct-Injection Gasoline Engines

Automotive Spark-Ignited Direct-Injection Gasoline Engines PDF Author: F. Zhao
Publisher: Elsevier
ISBN: 008055279X
Category : Technology & Engineering
Languages : en
Pages : 129

Book Description
The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.

Natural Gas Engines

Natural Gas Engines PDF Author: Kalyan Kumar Srinivasan
Publisher: Springer
ISBN: 9811333076
Category : Technology & Engineering
Languages : en
Pages : 419

Book Description
This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.

Research on the Broderson Method of Charge Stratification for the Spark-ignition Engine

Research on the Broderson Method of Charge Stratification for the Spark-ignition Engine PDF Author: José Luis Bascunaña
Publisher:
ISBN:
Category :
Languages : en
Pages : 284

Book Description


Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373

Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance PDF Author: Richard Folkson
Publisher: Woodhead Publishing
ISBN: 0323900283
Category : Technology & Engineering
Languages : en
Pages : 800

Book Description
Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. Provides a fully updated reference with significant technological advances and developments in the sector Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry

An Image-based Analysis of Stratified Natural Gas Combustion in a Constant Volume Bomb

An Image-based Analysis of Stratified Natural Gas Combustion in a Constant Volume Bomb PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Current stoichiometric spark-ignited engine technologies require costly catalytic converters for reductions in tailpipe emissions. Load control is achieved by using a throttle, which is a leading contributor to reductions in efficiency. Spark-ignited lean burn natural gas engines have been proven to be more efficient and emit fewer pollutants than their stoichiometric counterparts. Load reduction in these engines can be achieved by regulating the air/fuel ratio of the intake charge thereby reducing the efficiency penalties inherent to throttling. Partially stratified charge (PSC) can provide further reductions in emissions and improvements in efficiency by extending the lean limit of operation. PSC is achieved by the ignition of a small quantity of natural gas in the vicinity of the spark plug. This creates an easily ignitable mixture at the spark plug electrodes, thereby providing a high energy ignition source for the ultra-lean bulk charge. Stratified charge engine operation using direct injection (DI) has been proposed as a method of bridging the throttleless load reduction gap between idle and ultra-lean conditions. A previous study was conducted to determine if PSC can provide a high-energy ignition source in a direct injected stratified charge engine. Difficulties with igniting the PSC injections in an air-only bulk charge were encountered. This study focuses on a fundamental Schlieren image-based analysis of PSC combustion. Natural gas was injected through a modified spark plug located in an optically accessible combustion bomb. The relationships between PSC injection timing, fuel supply pressure and spark timing were investigated. Spark timing is defined as the duration between commanded start of injection and the time of spark. As the fuel supply pressure was increased, the minimum spark timing that lead to successful combustion also increased. The largest spark timing window that led to successful combustion was determined to be 80 ms wide at an injection.