Author: Amy E. Slaton
Publisher: JHU Press
ISBN: 0801872979
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Examining the proliferation of reinforced-concrete construction in the United States after 1900, historian Amy E. Slaton considers how scientific approaches and occupations displaced traditionally skilled labor. The technology of concrete buildings—little studied by historians of engineering, architecture, or industry—offers a remarkable case study in the modernization of American production. The use of concrete brought to construction the new procedures and priorities of mass production. These included a comprehensive application of science to commercial enterprise and vast redistributions of skills, opportunities, credit, and risk in the workplace. Reinforced concrete also changed the American landscape as building buyers embraced the architectural uniformity and simplicity to which the technology was best suited. Based on a wealth of data that includes university curricula, laboratory and company records, organizational proceedings, blueprints, and promotional materials as well as a rich body of physical evidence such as tools, instruments, building materials, and surviving reinforced-concrete buildings, this book tests the thesis that modern mass production in the United States came about not simply in answer to manufacturers' search for profits, but as a result of a complex of occupational and cultural agendas.
Reinforced Concrete and the Modernization of American Building, 1900-1930
Author: Amy E. Slaton
Publisher: JHU Press
ISBN: 0801872979
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Examining the proliferation of reinforced-concrete construction in the United States after 1900, historian Amy E. Slaton considers how scientific approaches and occupations displaced traditionally skilled labor. The technology of concrete buildings—little studied by historians of engineering, architecture, or industry—offers a remarkable case study in the modernization of American production. The use of concrete brought to construction the new procedures and priorities of mass production. These included a comprehensive application of science to commercial enterprise and vast redistributions of skills, opportunities, credit, and risk in the workplace. Reinforced concrete also changed the American landscape as building buyers embraced the architectural uniformity and simplicity to which the technology was best suited. Based on a wealth of data that includes university curricula, laboratory and company records, organizational proceedings, blueprints, and promotional materials as well as a rich body of physical evidence such as tools, instruments, building materials, and surviving reinforced-concrete buildings, this book tests the thesis that modern mass production in the United States came about not simply in answer to manufacturers' search for profits, but as a result of a complex of occupational and cultural agendas.
Publisher: JHU Press
ISBN: 0801872979
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Examining the proliferation of reinforced-concrete construction in the United States after 1900, historian Amy E. Slaton considers how scientific approaches and occupations displaced traditionally skilled labor. The technology of concrete buildings—little studied by historians of engineering, architecture, or industry—offers a remarkable case study in the modernization of American production. The use of concrete brought to construction the new procedures and priorities of mass production. These included a comprehensive application of science to commercial enterprise and vast redistributions of skills, opportunities, credit, and risk in the workplace. Reinforced concrete also changed the American landscape as building buyers embraced the architectural uniformity and simplicity to which the technology was best suited. Based on a wealth of data that includes university curricula, laboratory and company records, organizational proceedings, blueprints, and promotional materials as well as a rich body of physical evidence such as tools, instruments, building materials, and surviving reinforced-concrete buildings, this book tests the thesis that modern mass production in the United States came about not simply in answer to manufacturers' search for profits, but as a result of a complex of occupational and cultural agendas.
Design of Reinforced Concrete Buildings for Seismic Performance
Author: Mark Aschheim
Publisher: CRC Press
ISBN: 148226692X
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.
Publisher: CRC Press
ISBN: 148226692X
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.
Reinforced Concrete Structures: Analysis and Design
Author: David D. E. E. Fanella
Publisher: McGraw Hill Professional
ISBN: 0071638350
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations
Publisher: McGraw Hill Professional
ISBN: 0071638350
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations
Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings
Author: P. Fajfar
Publisher: CRC Press
ISBN: 1851667644
Category : Architecture
Languages : en
Pages : 318
Book Description
Forty scientists working in 13 different countries detail in this work the most recent advances in seismic design and performance assessment of reinforced concrete buildings. It is a valuable contribution in the mitigation of natural disasters.
Publisher: CRC Press
ISBN: 1851667644
Category : Architecture
Languages : en
Pages : 318
Book Description
Forty scientists working in 13 different countries detail in this work the most recent advances in seismic design and performance assessment of reinforced concrete buildings. It is a valuable contribution in the mitigation of natural disasters.
Experiment and Calculation of Reinforced Concrete at Elevated Temperatures
Author: Zhenhai Guo
Publisher: Butterworth-Heinemann
ISBN: 0123869633
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Concrete as a construction material goes through both physical and chemical changes under extreme elevated temperatures. As one of the most widely used building materials, it is important that both engineers and architects are able to understand and predict its behavior in under extreme heat conditions. Brief and readable, this book provides the tools and techniques to properly analysis the effects of high temperature of reinforced concrete which will lead to more stable, safer structures. Based on years of the author's research, Reinforced Concrete at Elevated Temperatures four part treatment starts with an unambiguous and thorough exposition of the mechanical behaviors of materials at elevated temperature followed by a discussion of Temperature field of member sections, Mechanical behaviors of members and structures at elevated temperature, ending with Theoretical analysis and practical calculation methods. The book provides unique insight into: - Coupling thermal-mechanical constitutive relation of concrete - Exceptional analyses of beams and columns of rectangular section with three surfaces and two adjacent surfaces exposing to high temperature - Measurement and analysis of redistribution of internal forces of statically indeterminate structure during heating-loading process - Finite element analysis and calculation charts for two-dimensional temperature field of structural members - Finite element analysis and simplified calculation method for reinforced concrete structure at elevated temperature With this book, engineers and architects can effectively analyze the effect of high temperature on concrete and materials which will lead to better designs of fire resistant and damage evaluation and treatment after fire. - Tools and techniques for analyzing the effects of high temperature on concrete and reinforcement materials - Measurement and analysis of redistribution of internal forces of statically indeterminate structure during the heating-loading process - Finite element analysis and calculation charts for two-dimensional temperature field of structural members - Finite element analysis and simplified calculation method for reinforced concrete structure at elevated temperature
Publisher: Butterworth-Heinemann
ISBN: 0123869633
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Concrete as a construction material goes through both physical and chemical changes under extreme elevated temperatures. As one of the most widely used building materials, it is important that both engineers and architects are able to understand and predict its behavior in under extreme heat conditions. Brief and readable, this book provides the tools and techniques to properly analysis the effects of high temperature of reinforced concrete which will lead to more stable, safer structures. Based on years of the author's research, Reinforced Concrete at Elevated Temperatures four part treatment starts with an unambiguous and thorough exposition of the mechanical behaviors of materials at elevated temperature followed by a discussion of Temperature field of member sections, Mechanical behaviors of members and structures at elevated temperature, ending with Theoretical analysis and practical calculation methods. The book provides unique insight into: - Coupling thermal-mechanical constitutive relation of concrete - Exceptional analyses of beams and columns of rectangular section with three surfaces and two adjacent surfaces exposing to high temperature - Measurement and analysis of redistribution of internal forces of statically indeterminate structure during heating-loading process - Finite element analysis and calculation charts for two-dimensional temperature field of structural members - Finite element analysis and simplified calculation method for reinforced concrete structure at elevated temperature With this book, engineers and architects can effectively analyze the effect of high temperature on concrete and materials which will lead to better designs of fire resistant and damage evaluation and treatment after fire. - Tools and techniques for analyzing the effects of high temperature on concrete and reinforcement materials - Measurement and analysis of redistribution of internal forces of statically indeterminate structure during the heating-loading process - Finite element analysis and calculation charts for two-dimensional temperature field of structural members - Finite element analysis and simplified calculation method for reinforced concrete structure at elevated temperature
Mechanics of Structures and Materials XXIV
Author: Hong Hao
Publisher: CRC Press
ISBN: 1351850210
Category : Science
Languages : en
Pages : 1966
Book Description
Mechanics of Structures and Materials: Advancements and Challenges is a collection of peer-reviewed papers presented at the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24, Curtin University, Perth, Western Australia, 6-9 December 2016). The contributions from academics, researchers and practising engineers from Australasian, Asia-pacific region and around the world, cover a wide range of topics, including: • Structural mechanics • Computational mechanics • Reinforced and prestressed concrete structures • Steel structures • Composite structures • Civil engineering materials • Fire engineering • Coastal and offshore structures • Dynamic analysis of structures • Structural health monitoring and damage identification • Structural reliability analysis and design • Structural optimization • Fracture and damage mechanics • Soil mechanics and foundation engineering • Pavement materials and technology • Shock and impact loading • Earthquake loading • Traffic and other man-made loadings • Wave and wind loading • Thermal effects • Design codes Mechanics of Structures and Materials: Advancements and Challenges will be of interest to academics and professionals involved in Structural Engineering and Materials Science.
Publisher: CRC Press
ISBN: 1351850210
Category : Science
Languages : en
Pages : 1966
Book Description
Mechanics of Structures and Materials: Advancements and Challenges is a collection of peer-reviewed papers presented at the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24, Curtin University, Perth, Western Australia, 6-9 December 2016). The contributions from academics, researchers and practising engineers from Australasian, Asia-pacific region and around the world, cover a wide range of topics, including: • Structural mechanics • Computational mechanics • Reinforced and prestressed concrete structures • Steel structures • Composite structures • Civil engineering materials • Fire engineering • Coastal and offshore structures • Dynamic analysis of structures • Structural health monitoring and damage identification • Structural reliability analysis and design • Structural optimization • Fracture and damage mechanics • Soil mechanics and foundation engineering • Pavement materials and technology • Shock and impact loading • Earthquake loading • Traffic and other man-made loadings • Wave and wind loading • Thermal effects • Design codes Mechanics of Structures and Materials: Advancements and Challenges will be of interest to academics and professionals involved in Structural Engineering and Materials Science.
Reinforced Concrete and the Modernization of American Building, 1900-1930
Author: Amy E. Slaton
Publisher: JHU Press
ISBN: 9780801865596
Category : Science
Languages : en
Pages : 280
Book Description
Examining the proliferation of reinforced-concrete construction in the United States after 1900, historian Amy E. Slaton considers how scientific approaches and occupations displaced traditionally skilled labor. The technology of concrete buildings—little studied by historians of engineering, architecture, or industry—offers a remarkable case study in the modernization of American production. The use of concrete brought to construction the new procedures and priorities of mass production. These included a comprehensive application of science to commercial enterprise and vast redistributions of skills, opportunities, credit, and risk in the workplace. Reinforced concrete also changed the American landscape as building buyers embraced the architectural uniformity and simplicity to which the technology was best suited. Based on a wealth of data that includes university curricula, laboratory and company records, organizational proceedings, blueprints, and promotional materials as well as a rich body of physical evidence such as tools, instruments, building materials, and surviving reinforced-concrete buildings, this book tests the thesis that modern mass production in the United States came about not simply in answer to manufacturers' search for profits, but as a result of a complex of occupational and cultural agendas. -- Robert Friedel, University of Maryland, College Park
Publisher: JHU Press
ISBN: 9780801865596
Category : Science
Languages : en
Pages : 280
Book Description
Examining the proliferation of reinforced-concrete construction in the United States after 1900, historian Amy E. Slaton considers how scientific approaches and occupations displaced traditionally skilled labor. The technology of concrete buildings—little studied by historians of engineering, architecture, or industry—offers a remarkable case study in the modernization of American production. The use of concrete brought to construction the new procedures and priorities of mass production. These included a comprehensive application of science to commercial enterprise and vast redistributions of skills, opportunities, credit, and risk in the workplace. Reinforced concrete also changed the American landscape as building buyers embraced the architectural uniformity and simplicity to which the technology was best suited. Based on a wealth of data that includes university curricula, laboratory and company records, organizational proceedings, blueprints, and promotional materials as well as a rich body of physical evidence such as tools, instruments, building materials, and surviving reinforced-concrete buildings, this book tests the thesis that modern mass production in the United States came about not simply in answer to manufacturers' search for profits, but as a result of a complex of occupational and cultural agendas. -- Robert Friedel, University of Maryland, College Park
Reliability Assessment Using Stochastic Finite Element Analysis
Author: Achintya Haldar
Publisher: John Wiley & Sons
ISBN: 9780471369615
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.
Publisher: John Wiley & Sons
ISBN: 9780471369615
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.
Proceedings of the Philadelphia and National Conferences on the Construction Industries
Author: John Price Jackson
Publisher:
ISBN:
Category : Building
Languages : en
Pages : 280
Book Description
Publisher:
ISBN:
Category : Building
Languages : en
Pages : 280
Book Description