An Accompaniment to Higher Mathematics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Accompaniment to Higher Mathematics PDF full book. Access full book title An Accompaniment to Higher Mathematics by George R. Exner. Download full books in PDF and EPUB format.

An Accompaniment to Higher Mathematics

An Accompaniment to Higher Mathematics PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 1461239982
Category : Mathematics
Languages : en
Pages : 212

Book Description
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

An Accompaniment to Higher Mathematics

An Accompaniment to Higher Mathematics PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 1461239982
Category : Mathematics
Languages : en
Pages : 212

Book Description
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

An Accompaniment to Higher Mathematics

An Accompaniment to Higher Mathematics PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 9780387946177
Category : Mathematics
Languages : en
Pages : 232

Book Description
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

Mathematical Vistas

Mathematical Vistas PDF Author: Peter Hilton
Publisher: Springer Science & Business Media
ISBN: 1475736819
Category : Mathematics
Languages : en
Pages : 344

Book Description
This book collects nine related mathematical essays which will intrigue and inform. From the reviews: "The authors put their writing where their talents are, and students get to see just how alive mathematics is...there is much to commend the book. It contains plenty of interesting mathematics, often going in unusual directions. I like the diagrams; the authors have chosen mathematics that involves especially pretty ones." --THE MATHEMATICAL ASSOCIATION OF AMERICA

Mathematical Reflections

Mathematical Reflections PDF Author: Peter Hilton
Publisher: Springer Science & Business Media
ISBN: 1461219329
Category : Mathematics
Languages : en
Pages : 367

Book Description
A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.

Inside Calculus

Inside Calculus PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 038722646X
Category : Mathematics
Languages : en
Pages : 227

Book Description
The approach here relies on two beliefs. The first is that almost nobody fully understands calculus the first time around. The second is that graphing calculators can be used to simplify the theory of limits for students. This book presents the theoretical pieces of introductory calculus, using appropriate technology, in a style suitable to accompany almost any first calculus text. It offers a large range of increasingly sophisticated examples and problems to build an understanding of the notion of limit and other theoretical concepts. Aimed at students who will study fields in which the understanding of calculus as a tool is not sufficient, the text uses the "spiral approach" of teaching, returning again and again to difficult topics, anticipating such returns across the calculus courses in preparation for the first analysis course. Suitable as the "content" text for a transition to upper level mathematics course.

Introduction to Analysis

Introduction to Analysis PDF Author: Maxwell Rosenlicht
Publisher: Courier Corporation
ISBN: 0486134687
Category : Mathematics
Languages : en
Pages : 270

Book Description
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.

A Concrete Introduction to Higher Algebra

A Concrete Introduction to Higher Algebra PDF Author: Lindsay N. Childs
Publisher: Springer Science & Business Media
ISBN: 1441987029
Category : Mathematics
Languages : en
Pages : 540

Book Description
An informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials, with much emphasis placed on congruence classes leading the way to finite groups and finite fields. New examples and theory are integrated in a well-motivated fashion and made relevant by many applications -- to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises, ranging from routine examples to extensions of theory, are scattered throughout the book, with hints and answers for many of them included in an appendix.

A First Course in Real Analysis

A First Course in Real Analysis PDF Author: Murray H. Protter
Publisher: Springer Science & Business Media
ISBN: 1441987444
Category : Mathematics
Languages : en
Pages : 551

Book Description
Many changes have been made in this second edition of A First Course in Real Analysis. The most noticeable is the addition of many problems and the inclusion of answers to most of the odd-numbered exercises. The book's readability has also been improved by the further clarification of many of the proofs, additional explanatory remarks, and clearer notation.

Applied Linear Algebra and Matrix Analysis

Applied Linear Algebra and Matrix Analysis PDF Author: Thomas S. Shores
Publisher: Springer Science & Business Media
ISBN: 0387489479
Category : Mathematics
Languages : en
Pages : 394

Book Description
This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.

The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra PDF Author: Benjamin Fine
Publisher: Springer Science & Business Media
ISBN: 1461219280
Category : Mathematics
Languages : en
Pages : 220

Book Description
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.