Author: Sidney Irving Feurst
Publisher:
ISBN:
Category :
Languages : en
Pages : 102
Book Description
Alternative Approaches in the Behrens-Fisher Problem
Author: Sidney Irving Feurst
Publisher:
ISBN:
Category :
Languages : en
Pages : 102
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 102
Book Description
A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem
Author: Tejas Desai
Publisher: Springer Science & Business Media
ISBN: 1461464439
Category : Mathematics
Languages : en
Pages : 60
Book Description
In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an approach to the Behrens-Fisher problem. Since high-speed computers were not available in Fisher’s time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher’s approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case. In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem. We start out by presenting a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples.
Publisher: Springer Science & Business Media
ISBN: 1461464439
Category : Mathematics
Languages : en
Pages : 60
Book Description
In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an approach to the Behrens-Fisher problem. Since high-speed computers were not available in Fisher’s time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher’s approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case. In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem. We start out by presenting a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples.
Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence
Author: David L. Dowe
Publisher: Springer
ISBN: 3642449581
Category : Computers
Languages : en
Pages : 457
Book Description
Algorithmic probability and friends: Proceedings of the Ray Solomonoff 85th memorial conference is a collection of original work and surveys. The Solomonoff 85th memorial conference was held at Monash University's Clayton campus in Melbourne, Australia as a tribute to pioneer, Ray Solomonoff (1926-2009), honouring his various pioneering works - most particularly, his revolutionary insight in the early 1960s that the universality of Universal Turing Machines (UTMs) could be used for universal Bayesian prediction and artificial intelligence (machine learning). This work continues to increasingly influence and under-pin statistics, econometrics, machine learning, data mining, inductive inference, search algorithms, data compression, theories of (general) intelligence and philosophy of science - and applications of these areas. Ray not only envisioned this as the path to genuine artificial intelligence, but also, still in the 1960s, anticipated stages of progress in machine intelligence which would ultimately lead to machines surpassing human intelligence. Ray warned of the need to anticipate and discuss the potential consequences - and dangers - sooner rather than later. Possibly foremostly, Ray Solomonoff was a fine, happy, frugal and adventurous human being of gentle resolve who managed to fund himself while electing to conduct so much of his paradigm-changing research outside of the university system. The volume contains 35 papers pertaining to the abovementioned topics in tribute to Ray Solomonoff and his legacy.
Publisher: Springer
ISBN: 3642449581
Category : Computers
Languages : en
Pages : 457
Book Description
Algorithmic probability and friends: Proceedings of the Ray Solomonoff 85th memorial conference is a collection of original work and surveys. The Solomonoff 85th memorial conference was held at Monash University's Clayton campus in Melbourne, Australia as a tribute to pioneer, Ray Solomonoff (1926-2009), honouring his various pioneering works - most particularly, his revolutionary insight in the early 1960s that the universality of Universal Turing Machines (UTMs) could be used for universal Bayesian prediction and artificial intelligence (machine learning). This work continues to increasingly influence and under-pin statistics, econometrics, machine learning, data mining, inductive inference, search algorithms, data compression, theories of (general) intelligence and philosophy of science - and applications of these areas. Ray not only envisioned this as the path to genuine artificial intelligence, but also, still in the 1960s, anticipated stages of progress in machine intelligence which would ultimately lead to machines surpassing human intelligence. Ray warned of the need to anticipate and discuss the potential consequences - and dangers - sooner rather than later. Possibly foremostly, Ray Solomonoff was a fine, happy, frugal and adventurous human being of gentle resolve who managed to fund himself while electing to conduct so much of his paradigm-changing research outside of the university system. The volume contains 35 papers pertaining to the abovementioned topics in tribute to Ray Solomonoff and his legacy.
Inferential Models
Author: Ryan Martin
Publisher: CRC Press
ISBN: 1439886512
Category : Mathematics
Languages : en
Pages : 274
Book Description
A New Approach to Sound Statistical ReasoningInferential Models: Reasoning with Uncertainty introduces the authors' recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaning
Publisher: CRC Press
ISBN: 1439886512
Category : Mathematics
Languages : en
Pages : 274
Book Description
A New Approach to Sound Statistical ReasoningInferential Models: Reasoning with Uncertainty introduces the authors' recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaning
Encyclopedia of Statistical Sciences, Volume 1
Author:
Publisher: John Wiley & Sons
ISBN: 0471743917
Category : Mathematics
Languages : en
Pages : 722
Book Description
ENCYCLOPEDIA OF STATISTICAL SCIENCES
Publisher: John Wiley & Sons
ISBN: 0471743917
Category : Mathematics
Languages : en
Pages : 722
Book Description
ENCYCLOPEDIA OF STATISTICAL SCIENCES
Designing Experiments and Analyzing Data
Author: Scott E. Maxwell
Publisher: Routledge
ISBN: 1317284569
Category : Psychology
Languages : en
Pages : 1056
Book Description
Designing Experiments and Analyzing Data: A Model Comparison Perspective (3rd edition) offers an integrative conceptual framework for understanding experimental design and data analysis. Maxwell, Delaney, and Kelley first apply fundamental principles to simple experimental designs followed by an application of the same principles to more complicated designs. Their integrative conceptual framework better prepares readers to understand the logic behind a general strategy of data analysis that is appropriate for a wide variety of designs, which allows for the introduction of more complex topics that are generally omitted from other books. Numerous pedagogical features further facilitate understanding: examples of published research demonstrate the applicability of each chapter’s content; flowcharts assist in choosing the most appropriate procedure; end-of-chapter lists of important formulas highlight key ideas and assist readers in locating the initial presentation of equations; useful programming code and tips are provided throughout the book and in associated resources available online, and extensive sets of exercises help develop a deeper understanding of the subject. Detailed solutions for some of the exercises and realistic data sets are included on the website (DesigningExperiments.com). The pedagogical approach used throughout the book enables readers to gain an overview of experimental design, from conceptualization of the research question to analysis of the data. The book and its companion website with web apps, tutorials, and detailed code are ideal for students and researchers seeking the optimal way to design their studies and analyze the resulting data.
Publisher: Routledge
ISBN: 1317284569
Category : Psychology
Languages : en
Pages : 1056
Book Description
Designing Experiments and Analyzing Data: A Model Comparison Perspective (3rd edition) offers an integrative conceptual framework for understanding experimental design and data analysis. Maxwell, Delaney, and Kelley first apply fundamental principles to simple experimental designs followed by an application of the same principles to more complicated designs. Their integrative conceptual framework better prepares readers to understand the logic behind a general strategy of data analysis that is appropriate for a wide variety of designs, which allows for the introduction of more complex topics that are generally omitted from other books. Numerous pedagogical features further facilitate understanding: examples of published research demonstrate the applicability of each chapter’s content; flowcharts assist in choosing the most appropriate procedure; end-of-chapter lists of important formulas highlight key ideas and assist readers in locating the initial presentation of equations; useful programming code and tips are provided throughout the book and in associated resources available online, and extensive sets of exercises help develop a deeper understanding of the subject. Detailed solutions for some of the exercises and realistic data sets are included on the website (DesigningExperiments.com). The pedagogical approach used throughout the book enables readers to gain an overview of experimental design, from conceptualization of the research question to analysis of the data. The book and its companion website with web apps, tutorials, and detailed code are ideal for students and researchers seeking the optimal way to design their studies and analyze the resulting data.
The SAGE Encyclopedia of Research Design
Author: Bruce B. Frey
Publisher: SAGE Publications
ISBN: 1071812106
Category : Social Science
Languages : en
Pages : 3889
Book Description
The SAGE Encyclopedia of Research Design maps out how one makes decisions about research design, interprets data, and draws valid inferences, undertakes research projects in an ethical manner, and evaluates experimental design strategies and results. From A-to-Z, this four-volume work covers the spectrum of research design strategies and topics including, among other things: fundamental research design principles, ethics in the research process, quantitative versus qualitative and mixed-method designs, completely randomized designs, multiple comparison tests, diagnosing agreement between data and models, fundamental assumptions in analysis of variance, factorial treatment designs, complete and incomplete block designs, Latin square and related designs, hierarchical designs, response surface designs, split-plot designs, repeated measures designs, crossover designs, analysis of covariance, statistical software packages, and much more. Research design, with its statistical underpinnings, can be especially daunting for students and novice researchers. At its heart, research design might be described simply as a formalized approach toward problem solving, thinking, and acquiring knowledge, the success of which depends upon clearly defined objectives and appropriate choice of statistical design and analysis to meet those objectives. The SAGE Encyclopedia of Research Design will assist students and researchers with their work while providing vital information on research strategies.
Publisher: SAGE Publications
ISBN: 1071812106
Category : Social Science
Languages : en
Pages : 3889
Book Description
The SAGE Encyclopedia of Research Design maps out how one makes decisions about research design, interprets data, and draws valid inferences, undertakes research projects in an ethical manner, and evaluates experimental design strategies and results. From A-to-Z, this four-volume work covers the spectrum of research design strategies and topics including, among other things: fundamental research design principles, ethics in the research process, quantitative versus qualitative and mixed-method designs, completely randomized designs, multiple comparison tests, diagnosing agreement between data and models, fundamental assumptions in analysis of variance, factorial treatment designs, complete and incomplete block designs, Latin square and related designs, hierarchical designs, response surface designs, split-plot designs, repeated measures designs, crossover designs, analysis of covariance, statistical software packages, and much more. Research design, with its statistical underpinnings, can be especially daunting for students and novice researchers. At its heart, research design might be described simply as a formalized approach toward problem solving, thinking, and acquiring knowledge, the success of which depends upon clearly defined objectives and appropriate choice of statistical design and analysis to meet those objectives. The SAGE Encyclopedia of Research Design will assist students and researchers with their work while providing vital information on research strategies.
Nonparametric Statistical Methods
Author: Myles Hollander
Publisher: John Wiley & Sons
ISBN: 1118553292
Category : Mathematics
Languages : en
Pages : 872
Book Description
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.
Publisher: John Wiley & Sons
ISBN: 1118553292
Category : Mathematics
Languages : en
Pages : 872
Book Description
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.
Data Driven Statistical Methods
Author: Peter Sprent
Publisher: Routledge
ISBN: 1351456563
Category : Mathematics
Languages : en
Pages : 406
Book Description
Calculations once prohibitively time-consuming can be completed in microseconds by modern computers. This has resulted in dramatic shifts in emphasis in applied statistics. Not only has it freed us from an obsession with the 5% and 1% significance levels imposed by conventional tables but many exact estimation procedures based on randomization tests are now as easy to carry out as approximations based on normal distribution theory. In a wider context it has facilitated the everyday use of tools such as the bootstrap and robust estimation methods as well as diagnostic tests for pinpointing or for adjusting possible aberrations or contamination that may otherwise be virtually undetectable in complex data sets. Data Driven Statistical Methods provides an insight into modern developments in statistical methodology using examples that highlight connections between these techniques as well as their relationship to other established approaches. Illustration by simple numerical examples takes priority over abstract theory. Examples and exercises are selected from many fields ranging from studies of literary style to analysis of survival data from clinical files, from psychological tests to interpretation of evidence in legal cases. Users are encouraged to apply the methods to their own or other data sets relevant to their fields of interest. The book will appeal both to lecturers giving undergraduate mainstream or service courses in statistics and to newly-practising statisticians or others concerned with data interpretation in any discipline who want to make the best use of modern statistical computer software.
Publisher: Routledge
ISBN: 1351456563
Category : Mathematics
Languages : en
Pages : 406
Book Description
Calculations once prohibitively time-consuming can be completed in microseconds by modern computers. This has resulted in dramatic shifts in emphasis in applied statistics. Not only has it freed us from an obsession with the 5% and 1% significance levels imposed by conventional tables but many exact estimation procedures based on randomization tests are now as easy to carry out as approximations based on normal distribution theory. In a wider context it has facilitated the everyday use of tools such as the bootstrap and robust estimation methods as well as diagnostic tests for pinpointing or for adjusting possible aberrations or contamination that may otherwise be virtually undetectable in complex data sets. Data Driven Statistical Methods provides an insight into modern developments in statistical methodology using examples that highlight connections between these techniques as well as their relationship to other established approaches. Illustration by simple numerical examples takes priority over abstract theory. Examples and exercises are selected from many fields ranging from studies of literary style to analysis of survival data from clinical files, from psychological tests to interpretation of evidence in legal cases. Users are encouraged to apply the methods to their own or other data sets relevant to their fields of interest. The book will appeal both to lecturers giving undergraduate mainstream or service courses in statistics and to newly-practising statisticians or others concerned with data interpretation in any discipline who want to make the best use of modern statistical computer software.
Asymptotic Theory of Statistics and Probability
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 0387759719
Category : Mathematics
Languages : en
Pages : 727
Book Description
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Publisher: Springer Science & Business Media
ISBN: 0387759719
Category : Mathematics
Languages : en
Pages : 727
Book Description
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.