Author: A. Bhatia
Publisher: CreateSpace
ISBN: 9781508497028
Category : Technology & Engineering
Languages : en
Pages : 52
Book Description
A direct current generator, or DC generator, produces a voltage of constant polarity, which means the voltage and current do not change over time. DC generators are basically AC generators whose output voltage is switched the other way round at the proper moment, so that the direction of the voltage is always in a single direction. The AC generator uses slip rings to transfer the current to the electrical circuit, while the DC generator uses a split-ring commutator. Generators can be very small or quite huge. Commercial DC generators are commonly found in traction applications like subways and trains. Factories that do electrolysis, electroplating and those that produce aluminum, caustic soda, chlorine, and some other industrial materials need large amounts of direct current and use DC generators.An electric motor is very similar to a generator, except that power is provided to turn the rotors. They may, in fact, be described as generators "running backwards". When current is passed through the armature of a DC motor, a torque is generated by magnetic reaction, and the armature revolves. Adjustable speed is difficult to obtain with motors whose armatures are connected to fixed frequency power lines (AC motors). Here is where DC motors shine; their rotating field speed depends on the rotor speed itself. The speed of DC series motors varies with load, and torque varies inversely with speed. This makes them particularly suitable to starting high inertia loads such as railway trains. Starting a DC motor requires often an external resistor or rheostat to limit the current. The value, in Ohms, of that resistor is reduced in steps as the speed of the motor increases, until finally that resistor is removed from the circuit as the motor reaches close to its final speed.This 4-hr Quick Book provides discusses salient features of DC motors and generators in detail. The course is based entirely on Naval Education and Training Materials (NAVEDTRA 14177), Electricity and Electronic Training Series; Module-5 and covers Chapter 1 and 2 titled “Direct Current Generators and Direct Current Motors”. Learning ObjectiveAt the conclusion of this course, the reader will be able to:• State the principle by which generators convert mechanical energy to electrical energy.• State the rule to be applied when you determine the direction of induced emf in a coil.• State what component causes a generator to produce direct current rather than alternating current.• State how field strength can be varied in a dc generator.• State the three classifications of dc generators.• State the term that applies to voltage variation from no-load to full-load conditions and how it is expressed as a percentage.• State the factors that determine the direction of rotation in a dc motor.• State the right-hand rule for motors.• Describe the main differences and similarities between a dc generator and a dc motor.• List the advantages and disadvantages of the different types of dc motors.• Discuss the means of controlling the speed and direction of a dc motor.• Explain the need for a starting resistor in a dc motor.
Direct Current Generators
Author: A. Bhatia
Publisher: CreateSpace
ISBN: 9781508497028
Category : Technology & Engineering
Languages : en
Pages : 52
Book Description
A direct current generator, or DC generator, produces a voltage of constant polarity, which means the voltage and current do not change over time. DC generators are basically AC generators whose output voltage is switched the other way round at the proper moment, so that the direction of the voltage is always in a single direction. The AC generator uses slip rings to transfer the current to the electrical circuit, while the DC generator uses a split-ring commutator. Generators can be very small or quite huge. Commercial DC generators are commonly found in traction applications like subways and trains. Factories that do electrolysis, electroplating and those that produce aluminum, caustic soda, chlorine, and some other industrial materials need large amounts of direct current and use DC generators.An electric motor is very similar to a generator, except that power is provided to turn the rotors. They may, in fact, be described as generators "running backwards". When current is passed through the armature of a DC motor, a torque is generated by magnetic reaction, and the armature revolves. Adjustable speed is difficult to obtain with motors whose armatures are connected to fixed frequency power lines (AC motors). Here is where DC motors shine; their rotating field speed depends on the rotor speed itself. The speed of DC series motors varies with load, and torque varies inversely with speed. This makes them particularly suitable to starting high inertia loads such as railway trains. Starting a DC motor requires often an external resistor or rheostat to limit the current. The value, in Ohms, of that resistor is reduced in steps as the speed of the motor increases, until finally that resistor is removed from the circuit as the motor reaches close to its final speed.This 4-hr Quick Book provides discusses salient features of DC motors and generators in detail. The course is based entirely on Naval Education and Training Materials (NAVEDTRA 14177), Electricity and Electronic Training Series; Module-5 and covers Chapter 1 and 2 titled “Direct Current Generators and Direct Current Motors”. Learning ObjectiveAt the conclusion of this course, the reader will be able to:• State the principle by which generators convert mechanical energy to electrical energy.• State the rule to be applied when you determine the direction of induced emf in a coil.• State what component causes a generator to produce direct current rather than alternating current.• State how field strength can be varied in a dc generator.• State the three classifications of dc generators.• State the term that applies to voltage variation from no-load to full-load conditions and how it is expressed as a percentage.• State the factors that determine the direction of rotation in a dc motor.• State the right-hand rule for motors.• Describe the main differences and similarities between a dc generator and a dc motor.• List the advantages and disadvantages of the different types of dc motors.• Discuss the means of controlling the speed and direction of a dc motor.• Explain the need for a starting resistor in a dc motor.
Publisher: CreateSpace
ISBN: 9781508497028
Category : Technology & Engineering
Languages : en
Pages : 52
Book Description
A direct current generator, or DC generator, produces a voltage of constant polarity, which means the voltage and current do not change over time. DC generators are basically AC generators whose output voltage is switched the other way round at the proper moment, so that the direction of the voltage is always in a single direction. The AC generator uses slip rings to transfer the current to the electrical circuit, while the DC generator uses a split-ring commutator. Generators can be very small or quite huge. Commercial DC generators are commonly found in traction applications like subways and trains. Factories that do electrolysis, electroplating and those that produce aluminum, caustic soda, chlorine, and some other industrial materials need large amounts of direct current and use DC generators.An electric motor is very similar to a generator, except that power is provided to turn the rotors. They may, in fact, be described as generators "running backwards". When current is passed through the armature of a DC motor, a torque is generated by magnetic reaction, and the armature revolves. Adjustable speed is difficult to obtain with motors whose armatures are connected to fixed frequency power lines (AC motors). Here is where DC motors shine; their rotating field speed depends on the rotor speed itself. The speed of DC series motors varies with load, and torque varies inversely with speed. This makes them particularly suitable to starting high inertia loads such as railway trains. Starting a DC motor requires often an external resistor or rheostat to limit the current. The value, in Ohms, of that resistor is reduced in steps as the speed of the motor increases, until finally that resistor is removed from the circuit as the motor reaches close to its final speed.This 4-hr Quick Book provides discusses salient features of DC motors and generators in detail. The course is based entirely on Naval Education and Training Materials (NAVEDTRA 14177), Electricity and Electronic Training Series; Module-5 and covers Chapter 1 and 2 titled “Direct Current Generators and Direct Current Motors”. Learning ObjectiveAt the conclusion of this course, the reader will be able to:• State the principle by which generators convert mechanical energy to electrical energy.• State the rule to be applied when you determine the direction of induced emf in a coil.• State what component causes a generator to produce direct current rather than alternating current.• State how field strength can be varied in a dc generator.• State the three classifications of dc generators.• State the term that applies to voltage variation from no-load to full-load conditions and how it is expressed as a percentage.• State the factors that determine the direction of rotation in a dc motor.• State the right-hand rule for motors.• Describe the main differences and similarities between a dc generator and a dc motor.• List the advantages and disadvantages of the different types of dc motors.• Discuss the means of controlling the speed and direction of a dc motor.• Explain the need for a starting resistor in a dc motor.
Alternating Current and Direct Current Generators
Tidal Energy Systems
Author: Vikas Khare
Publisher: Elsevier
ISBN: 0128148829
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
Tidal Energy Systems: Design, Optimization and Control provides a comprehensive overview of concepts, technologies, management and the control of tidal energy systems and tidal power plants. It presents the fundamentals of tidal energy, including the structure of tidal currents and turbulence. Technology, principles, components, operation, and a performance assessment of each component are also covered. Other sections consider pre-feasibility analysis methods, plant operation, maintenance and power generation, reliability assessment in terms of failure distribution, constant failure rate and the time dependent failure model. Finally, the most recent research advances and future trends are reviewed. In addition, applicable real-life examples and a case study of India's tidal energy scenario are included. The book provides ocean energy researchers, practitioners and graduate students with all the information needed to design, deploy, manage and operate tidal energy systems. Senior undergraduate students will also find this to be a useful resource on the fundamentals of tidal energy systems and their components. - Presents the fundamentals of tidal energy, including system components, pre-feasibility analysis, and plant management, operations and control - Explores concepts of sustainability and a reliability analysis of tidal energy systems, as well as their economic aspects and future trends - Covers the assessment of tidal energy systems by optimization technique and game theory
Publisher: Elsevier
ISBN: 0128148829
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
Tidal Energy Systems: Design, Optimization and Control provides a comprehensive overview of concepts, technologies, management and the control of tidal energy systems and tidal power plants. It presents the fundamentals of tidal energy, including the structure of tidal currents and turbulence. Technology, principles, components, operation, and a performance assessment of each component are also covered. Other sections consider pre-feasibility analysis methods, plant operation, maintenance and power generation, reliability assessment in terms of failure distribution, constant failure rate and the time dependent failure model. Finally, the most recent research advances and future trends are reviewed. In addition, applicable real-life examples and a case study of India's tidal energy scenario are included. The book provides ocean energy researchers, practitioners and graduate students with all the information needed to design, deploy, manage and operate tidal energy systems. Senior undergraduate students will also find this to be a useful resource on the fundamentals of tidal energy systems and their components. - Presents the fundamentals of tidal energy, including system components, pre-feasibility analysis, and plant management, operations and control - Explores concepts of sustainability and a reliability analysis of tidal energy systems, as well as their economic aspects and future trends - Covers the assessment of tidal energy systems by optimization technique and game theory
Alternators, Alternating-current Generators
University Physics
Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Gas Turbines for Electric Power Generation
Author: S. Can Gülen
Publisher: Cambridge University Press
ISBN: 1108416659
Category : Business & Economics
Languages : en
Pages : 735
Book Description
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
Publisher: Cambridge University Press
ISBN: 1108416659
Category : Business & Economics
Languages : en
Pages : 735
Book Description
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
Electrical Installation Record
Author:
Publisher:
ISBN:
Category : Electric industries
Languages : en
Pages : 1560
Book Description
Publisher:
ISBN:
Category : Electric industries
Languages : en
Pages : 1560
Book Description
DC/AC Electrical Fundamentals
Author: Dale R. Patrick
Publisher: CRC Press
ISBN: 100085177X
Category : Science
Languages : en
Pages : 741
Book Description
This book explores many essential topics in a basic and easy-to-understand manner. This book, and the accompanying Electronic Devices and Circuit Fundamentals, have been modified with significant updates in content. The books are developed using a classic textbook – Electricity and Electronics: A Survey (5th Edition) – as a framework. Both new books have been structured using a similar sequence and organization as previous editions. The previous edition of Electricity and Electronics: A Survey contained 18 chapters, 8 in the Electricity section and 10 in the Electronics section. This book has been expanded to include 19 chapters, further simplifying content, and providing a more comprehensive coverage of the content. The content has been continually updated and revised through new editions and by reviewers over the years. Additional quality checks to ensure technical accuracy, clarity and coverage of content have always been an area of focus. Each edition of the text has been improved through the following features: Improved and updated text content Improved usage of illustrations and photos Use of color to add emphasis and clarify content.
Publisher: CRC Press
ISBN: 100085177X
Category : Science
Languages : en
Pages : 741
Book Description
This book explores many essential topics in a basic and easy-to-understand manner. This book, and the accompanying Electronic Devices and Circuit Fundamentals, have been modified with significant updates in content. The books are developed using a classic textbook – Electricity and Electronics: A Survey (5th Edition) – as a framework. Both new books have been structured using a similar sequence and organization as previous editions. The previous edition of Electricity and Electronics: A Survey contained 18 chapters, 8 in the Electricity section and 10 in the Electronics section. This book has been expanded to include 19 chapters, further simplifying content, and providing a more comprehensive coverage of the content. The content has been continually updated and revised through new editions and by reviewers over the years. Additional quality checks to ensure technical accuracy, clarity and coverage of content have always been an area of focus. Each edition of the text has been improved through the following features: Improved and updated text content Improved usage of illustrations and photos Use of color to add emphasis and clarify content.
Index of Military Specifications and Standards
Author: United States. Armed Forces Supply Support Center. Standardization Division
Publisher:
ISBN:
Category : Specifications
Languages : en
Pages : 562
Book Description
Publisher:
ISBN:
Category : Specifications
Languages : en
Pages : 562
Book Description
Index of Specifications and Standards (used By) Department of the Navy
Author: United States. Navy Department
Publisher:
ISBN:
Category : Specifications
Languages : en
Pages : 454
Book Description
Publisher:
ISBN:
Category : Specifications
Languages : en
Pages : 454
Book Description