Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces

Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces PDF Author: Toka Diagana
Publisher: Springer Science & Business Media
ISBN: 3319008498
Category : Mathematics
Languages : en
Pages : 312

Book Description
This book presents a comprehensive introduction to the concepts of almost periodicity, asymptotic almost periodicity, almost automorphy, asymptotic almost automorphy, pseudo-almost periodicity, and pseudo-almost automorphy as well as their recent generalizations. Some of the results presented are either new or else cannot be easily found in the mathematical literature. Despite the noticeable and rapid progress made on these important topics, the only standard references that currently exist on those new classes of functions and their applications are still scattered research articles. One of the main objectives of this book is to close that gap. The prerequisites for the book is the basic introductory course in real analysis. Depending on the background of the student, the book may be suitable for a beginning graduate and/or advanced undergraduate student. Moreover, it will be of a great interest to researchers in mathematics as well as in engineering, in physics, and related areas. Further, some parts of the book may be used for various graduate and undergraduate courses.

Almost Periodic and Almost Automorphic Functions in Abstract Spaces

Almost Periodic and Almost Automorphic Functions in Abstract Spaces PDF Author: Gaston M. N'Guérékata
Publisher: Springer
ISBN: 9783030737177
Category : Mathematics
Languages : en
Pages : 134

Book Description
This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.

Almost Automorphic and Almost Periodic Functions in Abstract Spaces

Almost Automorphic and Almost Periodic Functions in Abstract Spaces PDF Author: Gaston M. N'Guérékata
Publisher: Springer Science & Business Media
ISBN: 147574482X
Category : Mathematics
Languages : en
Pages : 143

Book Description
Almost Automorphic and Almost Periodic Functions in Abstract Spaces introduces and develops the theory of almost automorphic vector-valued functions in Bochner's sense and the study of almost periodic functions in a locally convex space in a homogenous and unified manner. It also applies the results obtained to study almost automorphic solutions of abstract differential equations, expanding the core topics with a plethora of groundbreaking new results and applications. For the sake of clarity, and to spare the reader unnecessary technical hurdles, the concepts are studied using classical methods of functional analysis.

Almost-periodic Functions in Abstract Spaces

Almost-periodic Functions in Abstract Spaces PDF Author: Samuel Zaidman
Publisher: Pitman Advanced Publishing Program
ISBN:
Category : Mathematics
Languages : en
Pages : 148

Book Description
This research not presents recent results in the field of almost-periodicity. The emphasis is on the study of vector-valued almost-periodic functions and related classes, such as asymptotically almost-periodic or almost-automorphic functions. Many examples are given, and applications are indicated. The first three chapters form a self-contained introduction to the study of continuity, derivability and integration in locally convex or Banach spaces. The remainder of the book is devoted to almost-periodicity and related topics. The functions are defined on IR, IR[superscript n] or an abstract group; the range is a Banach or a Hilbert space. Although treatment of the material related to pure mathematics, the theory has many applications in the area of abstract differential equations.

Almost Periodic and Almost Automorphic Functions in Abstract Spaces

Almost Periodic and Almost Automorphic Functions in Abstract Spaces PDF Author: Gaston M. N'Guérékata
Publisher: Springer Nature
ISBN: 3030737187
Category : Mathematics
Languages : en
Pages : 134

Book Description
This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.

Almost Periodic Type Functions and Ergodicity

Almost Periodic Type Functions and Ergodicity PDF Author: Zhang Chuanyi
Publisher: Springer Science & Business Media
ISBN: 9781402011580
Category : Mathematics
Languages : en
Pages : 372

Book Description
The theory of almost periodic functions was first developed by the Danish mathematician H. Bohr during 1925-1926. Then Bohr's work was substantially extended by S. Bochner, H. Weyl, A. Besicovitch, J. Favard, J. von Neumann, V. V. Stepanov, N. N. Bogolyubov, and oth ers. Generalization of the classical theory of almost periodic functions has been taken in several directions. One direction is the broader study of functions of almost periodic type. Related this is the study of ergodic ity. It shows that the ergodicity plays an important part in the theories of function spectrum, semigroup of bounded linear operators, and dynamical systems. The purpose of this book is to develop a theory of almost pe riodic type functions and ergodicity with applications-in particular, to our interest-in the theory of differential equations, functional differen tial equations and abstract evolution equations. The author selects these topics because there have been many (excellent) books on almost periodic functions and relatively, few books on almost periodic type and ergodicity. The author also wishes to reflect new results in the book during recent years. The book consists of four chapters. In the first chapter, we present a basic theory of four almost periodic type functions. Section 1. 1 is about almost periodic functions. To make the reader easily learn the almost periodicity, we first discuss it in scalar case. After studying a classical theory for this case, we generalize it to finite dimensional vector-valued case, and finally, to Banach-valued (including Hilbert-valued) situation.

Almost-Periodic Functions in Abstract Spaces

Almost-Periodic Functions in Abstract Spaces PDF Author: Samuel Zaidman
Publisher: Longman Sc & Tech
ISBN: 9780470206218
Category : Mathematics
Languages : en
Pages : 144

Book Description


Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations PDF Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110641852
Category : Mathematics
Languages : en
Pages : 372

Book Description
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.

Abstract Volterra Integro-Differential Equations

Abstract Volterra Integro-Differential Equations PDF Author: Marko Kostic
Publisher:
ISBN: 9780367377670
Category :
Languages : en
Pages : 0

Book Description
The theory of linear Volterra Integro-differental equations has been developing rapidly in the last three decades. This book provides an easy-to-read, concise introduction to the theory of ill-posed abstract Volterra Integro-differential equations. It is accessible to readers whose backgrounds include functions of one complex variable, integration theory and the basic theory of locally convex spaces. Each chapter is further divided into sections and subsections, and contains plenty of examples and open problems.

Selected Topics in Almost Periodicity

Selected Topics in Almost Periodicity PDF Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110763524
Category : Mathematics
Languages : en
Pages : 734

Book Description
Covers uniformly recurrent solutions and c-almost periodic solutions of abstract Volterra integro-differential equations as well as various generalizations of almost periodic functions in Lebesgue spaces with variable coefficients. Treats multi-dimensional almost periodic type functions and their generalizations in adequate detail.