A Statistical Mechanical Interpretation of Algorithmic Information Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Statistical Mechanical Interpretation of Algorithmic Information Theory PDF full book. Access full book title A Statistical Mechanical Interpretation of Algorithmic Information Theory by Kohtaro Tadaki. Download full books in PDF and EPUB format.

A Statistical Mechanical Interpretation of Algorithmic Information Theory

A Statistical Mechanical Interpretation of Algorithmic Information Theory PDF Author: Kohtaro Tadaki
Publisher: Springer Nature
ISBN: 9811507392
Category : Science
Languages : en
Pages : 136

Book Description
This book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for characterizing the notion of randomness for an individual object and for studying it closely and comprehensively. In this book, a statistical mechanical interpretation of AIT is introduced while explaining the basic notions and results of AIT to the reader who has an acquaintance with an elementary theory of computation. A simplification of the setting of AIT is the noiseless source coding in information theory. First, in the book, a statistical mechanical interpretation of the noiseless source coding scheme is introduced. It can be seen that the notions in statistical mechanics such as entropy, temperature, and thermal equilibrium are translated into the context of noiseless source coding in a natural manner. Then, the framework of AIT is introduced. On this basis, the introduction of a statistical mechanical interpretation of AIT is begun. Namely, the notion of thermodynamic quantities, such as free energy, energy, and entropy, is introduced into AIT. In the interpretation, the temperature is shown to be equal to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate measured by means of program-size complexity. Additionally, it is demonstrated that this situation holds for the temperature itself as a thermodynamic quantity. That is, for each of all the thermodynamic quantities above, the computability of its value at temperature T gives a sufficient condition for T to be a fixed point on partial randomness. In this groundbreaking book, the current status of the interpretation from both mathematical and physical points of view is reported. For example, a total statistical mechanical interpretation of AIT that actualizes a perfect correspondence to normal statistical mechanics can be developed by identifying a microcanonical ensemble in the framework of AIT. As a result, the statistical mechanical meaning of the thermodynamic quantities of AIT is clarified. In the book, the close relationship of the interpretation to Landauer's principle is pointed out.

A Statistical Mechanical Interpretation of Algorithmic Information Theory

A Statistical Mechanical Interpretation of Algorithmic Information Theory PDF Author: Kohtaro Tadaki
Publisher: Springer Nature
ISBN: 9811507392
Category : Science
Languages : en
Pages : 136

Book Description
This book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for characterizing the notion of randomness for an individual object and for studying it closely and comprehensively. In this book, a statistical mechanical interpretation of AIT is introduced while explaining the basic notions and results of AIT to the reader who has an acquaintance with an elementary theory of computation. A simplification of the setting of AIT is the noiseless source coding in information theory. First, in the book, a statistical mechanical interpretation of the noiseless source coding scheme is introduced. It can be seen that the notions in statistical mechanics such as entropy, temperature, and thermal equilibrium are translated into the context of noiseless source coding in a natural manner. Then, the framework of AIT is introduced. On this basis, the introduction of a statistical mechanical interpretation of AIT is begun. Namely, the notion of thermodynamic quantities, such as free energy, energy, and entropy, is introduced into AIT. In the interpretation, the temperature is shown to be equal to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate measured by means of program-size complexity. Additionally, it is demonstrated that this situation holds for the temperature itself as a thermodynamic quantity. That is, for each of all the thermodynamic quantities above, the computability of its value at temperature T gives a sufficient condition for T to be a fixed point on partial randomness. In this groundbreaking book, the current status of the interpretation from both mathematical and physical points of view is reported. For example, a total statistical mechanical interpretation of AIT that actualizes a perfect correspondence to normal statistical mechanics can be developed by identifying a microcanonical ensemble in the framework of AIT. As a result, the statistical mechanical meaning of the thermodynamic quantities of AIT is clarified. In the book, the close relationship of the interpretation to Landauer's principle is pointed out.

Algorithmic Information Theory for Physicists and Natural Scientists

Algorithmic Information Theory for Physicists and Natural Scientists PDF Author: Sean D Devine
Publisher:
ISBN: 9780750326414
Category :
Languages : en
Pages : 238

Book Description
Algorithmic information theory (AIT), or Kolmogorov complexity as it is known to mathematicians, can provide a useful tool for scientists to look at natural systems, however, some critical conceptual issues need to be understood and the advances already made collated and put in a form accessible to scientists. This book has been written in the hope that readers will be able to absorb the key ideas behind AIT so that they are in a better position to access the mathematical developments and to apply the ideas to their own areas of interest. The theoretical underpinning of AIT is outlined in the earlier chapters, while later chapters focus on the applications, drawing attention to the thermodynamic commonality between ordered physical systems such as the alignment of magnetic spins, the maintenance of a laser distant from equilibrium, and ordered living systems such as bacterial systems, an ecology, and an economy. Key Features Presents a mathematically complex subject in language accessible to scientists Provides rich insights into modelling far-from-equilibrium systems Emphasises applications across range of fields, including physics, biology and econophysics Empowers scientists to apply these mathematical tools to their own research

Algorithmic Information Theory

Algorithmic Information Theory PDF Author: Gregory. J. Chaitin
Publisher: Cambridge University Press
ISBN: 9780521616041
Category : Computers
Languages : en
Pages : 192

Book Description
Chaitin, the inventor of algorithmic information theory, presents in this book the strongest possible version of Gödel's incompleteness theorem, using an information theoretic approach based on the size of computer programs. One half of the book is concerned with studying the halting probability of a universal computer if its program is chosen by tossing a coin. The other half is concerned with encoding the halting probability as an algebraic equation in integers, a so-called exponential diophantine equation.

Algorithmic Information Theory for Physicists and Natural Scientists

Algorithmic Information Theory for Physicists and Natural Scientists PDF Author: Sean Devine
Publisher:
ISBN: 9780750326407
Category : Information theory
Languages : en
Pages : 0

Book Description
Algorithmic information theory (AIT), or Kolmogorov complexity as it is known to mathematicians, can provide a useful tool for scientists to look at natural systems, however some critical conceptual issues need to be understood and the advances already made collated and put in a form accessible to scientists. This book has been written in the hope that readers will be able to absorb the key ideas behind AIT so that they are in a better position to access the mathematical developments and to apply the ideas to their own areas of interest. The theoretical underpinning of AIT is outlined in the earlier chapters, while later chapters focus on the applications, drawing attention to the thermodynamic commonality between ordered physical systems such as the alignment of magnetic spins, the maintenance of a laser distant from equilibrium, and ordered living systems such as bacterial systems, an ecology, and an economy.

Information, Physics, and Computation

Information, Physics, and Computation PDF Author: Marc Mézard
Publisher: Oxford University Press
ISBN: 019857083X
Category : Computers
Languages : en
Pages : 584

Book Description
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.

Aspects of Kolmogorov Complexity the Physics of Information

Aspects of Kolmogorov Complexity the Physics of Information PDF Author: Bradley S. Tice
Publisher: CRC Press
ISBN: 1000797155
Category : Science
Languages : en
Pages : 98

Book Description
The research presented in Aspects of Kolmogorov Complexity addresses the fundamental standard of defining randomness as measured by a Martin-Lof level of randomness as found in random sequential binary strings. A classical study of statistics that addresses both a fundamental standard of statistics as well as an applied measure for statistical communication theory. The research points to compression levels in a random state that are greater than is found in current literature. A historical overview of the field of Kolmogorov Complexity and Algorithmic Information Theory, a subfield of Information Theory, is given as well as examples using a radix 3, radix 4, and radix 5 base numbers for both random and non-random sequential strings. The text also examines monochromatic and chromatic symbols and both theoretical and applied aspects of data compression as they relate to the transmission and storage of information. The appendix contains papers on the subject given at conferences and the references are current.ContentsTechnical topics addressed in Aspects of Kolmogorov Complexity include:• Statistical Communication Theory• Algorithmic Information Theory• Kolmogorov Complexity• Martin-Lof Randomness• Compression, Transmission and Storage of Information

Information, Randomness & Incompleteness

Information, Randomness & Incompleteness PDF Author: Gregory J. Chaitin
Publisher: World Scientific
ISBN: 9789810201715
Category : Mathematics
Languages : en
Pages : 332

Book Description
This book contains in easily accessible form all the main ideas of the creator and principal architect of algorithmic information theory. This expanded second edition has added thirteen abstracts, a 1988 Scientific American Article, a transcript of a EUROPALIA 89 lecture, an essay on biology, and an extensive bibliography. Its new larger format makes it easier to read. Chaitin's ideas are a fundamental extension of those of G”del and Turning and have exploded some basic assumptions of mathematics and thrown new light on the scientific method, epistemology, probability theory, and of course computer science and information theory.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms PDF Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694

Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Complexity, Entropy And The Physics Of Information

Complexity, Entropy And The Physics Of Information PDF Author: Wojciech H. Zurek
Publisher: CRC Press
ISBN: 0429971435
Category : Science
Languages : en
Pages : 545

Book Description
This book has emerged from a meeting held during the week of May 29 to June 2, 1989, at St. John’s College in Santa Fe under the auspices of the Santa Fe Institute. The (approximately 40) official participants as well as equally numerous “groupies” were enticed to Santa Fe by the above “manifesto.” The book—like the “Complexity, Entropy and the Physics of Information” meeting explores not only the connections between quantum and classical physics, information and its transfer, computation, and their significance for the formulation of physical theories, but it also considers the origins and evolution of the information-processing entities, their complexity, and the manner in which they analyze their perceptions to form models of the Universe. As a result, the contributions can be divided into distinct sections only with some difficulty. Indeed, I regard this degree of overlapping as a measure of the success of the meeting. It signifies consensus about the important questions and on the anticipated answers: they presumably lie somewhere in the “border territory,” where information, physics, complexity, quantum, and computation all meet.

Algorithmic Information Theory Physici

Algorithmic Information Theory Physici PDF Author: DEVINE
Publisher: IOP Publishing Limited
ISBN: 9780750326384
Category :
Languages : en
Pages : 238

Book Description
Algorithmic information theory (AIT), or Kolmogorov complexity as it is known to mathematicians, can provide a useful tool for scientists to look at natural systems, however, some critical conceptual issues need to be understood and the advances already made collated and put in a form accessible to scientists. This book has been written in the hope that readers will be able to absorb the key ideas behind AIT so that they are in a better position to access the mathematical developments and to apply the ideas to their own areas of interest. The theoretical underpinning of AIT is outlined in the earlier chapters, while later chapters focus on the applications, drawing attention to the thermodynamic commonality between ordered physical systems such as the alignment of magnetic spins, the maintenance of a laser distant from equilibrium, and ordered living systems such as bacterial systems, an ecology, and an economy. Key Features Presents a mathematically complex subject in language accessible to scientists Provides rich insights into modelling far-from-equilibrium systems Emphasises applications across range of fields, including physics, biology and econophysics Empowers scientists to apply these mathematical tools to their own research