Algebraic Theory of Processes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Algebraic Theory of Processes PDF full book. Access full book title Algebraic Theory of Processes by Matthew Hennessy. Download full books in PDF and EPUB format.

Algebraic Theory of Processes

Algebraic Theory of Processes PDF Author: Matthew Hennessy
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 296

Book Description
Algebraic Theory of Processes provides the first general and systematic introduction to the semantics of concurrent systems, a relatively new research area in computer science.

Algebraic Theory of Processes

Algebraic Theory of Processes PDF Author: Matthew Hennessy
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 296

Book Description
Algebraic Theory of Processes provides the first general and systematic introduction to the semantics of concurrent systems, a relatively new research area in computer science.

Process Algebra: Equational Theories of Communicating Processes

Process Algebra: Equational Theories of Communicating Processes PDF Author: J. C. M. Baeten
Publisher: Cambridge University Press
ISBN: 0521820499
Category : Computers
Languages : en
Pages : 477

Book Description
Presents a unified overview of the various process algebras currently in use and sets the standard for the field.

Handbook of Process Algebra

Handbook of Process Algebra PDF Author: J.A. Bergstra
Publisher: Elsevier
ISBN: 0080533671
Category : Computers
Languages : en
Pages : 1357

Book Description
Process Algebra is a formal description technique for complex computer systems, especially those involving communicating, concurrently executing components. It is a subject that concurrently touches many topic areas of computer science and discrete math, including system design notations, logic, concurrency theory, specification and verification, operational semantics, algorithms, complexity theory, and, of course, algebra.This Handbook documents the fate of process algebra since its inception in the late 1970's to the present. It is intended to serve as a reference source for researchers, students, and system designers and engineers interested in either the theory of process algebra or in learning what process algebra brings to the table as a formal system description and verification technique. The Handbook is divided into six parts spanning a total of 19 self-contained Chapters. The organization is as follows. Part 1, consisting of four chapters, covers a broad swath of the basic theory of process algebra. Part 2 contains two chapters devoted to the sub-specialization of process algebra known as finite-state processes, while the three chapters of Part 3 look at infinite-state processes, value-passing processes and mobile processes in particular. Part 4, also three chapters in length, explores several extensions to process algebra including real-time, probability and priority. The four chapters of Part 5 examine non-interleaving process algebras, while Part 6's three chapters address process-algebra tools and applications.

Algebraic and Diagrammatic Methods in Many-Fermion Theory

Algebraic and Diagrammatic Methods in Many-Fermion Theory PDF Author: Frank E. Harris
Publisher: Courier Dover Publications
ISBN: 0486837211
Category : Psychology
Languages : en
Pages : 418

Book Description
This text on the use of electron correlation effects in the description of the electronic structure of atoms, molecules, and crystals is intended for graduate students in physical chemistry and physics. Modern theories of electronic structure and methods of incorporating electron correlation contributions are developed using a diagrammatic and algebraic formulation, and the methods developed in the text are illustrated with examples from molecular and solid state quantum mechanics. A brief Introduction is followed by chapters on operator algebra, the independent-particle model, occupation-number formalism, and diagrams. Additional topics include the configuration-interaction method, the many-body perturbation theory, and the coupled-cluster method.

Algebraic Geometry and Statistical Learning Theory

Algebraic Geometry and Statistical Learning Theory PDF Author: Sumio Watanabe
Publisher: Cambridge University Press
ISBN: 0521864674
Category : Computers
Languages : en
Pages : 295

Book Description
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.

Introduction to Process Algebra

Introduction to Process Algebra PDF Author: Wan Fokkink
Publisher: Springer Science & Business Media
ISBN: 9783540665793
Category : Mathematics
Languages : en
Pages : 180

Book Description
Automated and semi-automated manipulation of so-called labelled transition systems has become an important means in discovering flaws in software and hardware systems. Process algebra has been developed to express such labelled transition systems algebraically, which enhances the ways of manipulation by means of equational logic and term rewriting. The theory of process algebra has developed rapidly over the last twenty years, and verification tools have been developed on the basis of process algebra, often in cooperation with techniques related to model checking. This textbook gives a thorough introduction into the basics of process algebra and its applications.

Algebraic and Discrete Mathematical Methods for Modern Biology

Algebraic and Discrete Mathematical Methods for Modern Biology PDF Author: Raina Robeva
Publisher: Academic Press
ISBN: 0128012714
Category : Mathematics
Languages : en
Pages : 383

Book Description
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources

Interpolation Processes

Interpolation Processes PDF Author: Giuseppe Mastroianni
Publisher: Springer Science & Business Media
ISBN: 3540683496
Category : Mathematics
Languages : en
Pages : 452

Book Description
Interpolation of functions is one of the basic part of Approximation Theory. There are many books on approximation theory, including interpolation methods that - peared in the last fty years, but a few of them are devoted only to interpolation processes. An example is the book of J. Szabados and P. VĂ©rtesi: Interpolation of Functions, published in 1990 by World Scienti c. Also, two books deal with a special interpolation problem, the so-called Birkhoff interpolation, written by G.G. Lorentz, K. Jetter, S.D. Riemenschneider (1983) and Y.G. Shi (2003). The classical books on interpolation address numerous negative results, i.e., - sultsondivergentinterpolationprocesses,usuallyconstructedoversomeequidistant system of nodes. The present book deals mainly with new results on convergent - terpolation processes in uniform norm, for algebraic and trigonometric polynomials, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. Basic tools in this eld (orthogonal polynomials, moduli of smoothness,K-functionals, etc.), as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. The rstchapterprovidesanaccountofbasicfactsonapproximationbyalgebraic and trigonometric polynomials introducing the most important concepts on appro- mation of functions. Especially, in Sect. 1.4 we give basic results on interpolation by algebraic polynomials, including representations and computation of interpolation polynomials, Lagrange operators, interpolation errors and uniform convergence in some important classes of functions, as well as an account on the Lebesgue function and some estimates for the Lebesgue constant.

Algebraic and Stochastic Coding Theory

Algebraic and Stochastic Coding Theory PDF Author: Dave K. Kythe
Publisher: CRC Press
ISBN: 1466505621
Category : Computers
Languages : en
Pages : 507

Book Description
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes. It then examines codes based on the Galois field theory as well as their application in BCH and especially the Reed–Solomon codes that have been used for error correction of data transmissions in space missions. The major outlook in coding theory seems to be geared toward stochastic processes, and this book takes a bold step in this direction. As research focuses on error correction and recovery of erasures, the book discusses belief propagation and distributions. It examines the low-density parity-check and erasure codes that have opened up new approaches to improve wide-area network data transmission. It also describes modern codes, such as the Luby transform and Raptor codes, that are enabling new directions in high-speed transmission of very large data to multiple users. This robust, self-contained text fully explains coding problems, illustrating them with more than 200 examples. Combining theory and computational techniques, it will appeal not only to students but also to industry professionals, researchers, and academics in areas such as coding theory and signal and image processing.

Classical Theory of Algebraic Numbers

Classical Theory of Algebraic Numbers PDF Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676

Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.