Author: L. Pachter
Publisher: Cambridge University Press
ISBN: 9780521857000
Category : Mathematics
Languages : en
Pages : 440
Book Description
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.
Algebraic Statistics for Computational Biology
Author: L. Pachter
Publisher: Cambridge University Press
ISBN: 9780521857000
Category : Mathematics
Languages : en
Pages : 440
Book Description
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.
Publisher: Cambridge University Press
ISBN: 9780521857000
Category : Mathematics
Languages : en
Pages : 440
Book Description
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.
Algebraic Statistics
Author: Seth Sullivant
Publisher: American Mathematical Soc.
ISBN: 1470435179
Category : Education
Languages : en
Pages : 506
Book Description
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.
Publisher: American Mathematical Soc.
ISBN: 1470435179
Category : Education
Languages : en
Pages : 506
Book Description
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.
Lectures on Algebraic Statistics
Author: Mathias Drton
Publisher: Springer Science & Business Media
ISBN: 3764389052
Category : Mathematics
Languages : en
Pages : 177
Book Description
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Publisher: Springer Science & Business Media
ISBN: 3764389052
Category : Mathematics
Languages : en
Pages : 177
Book Description
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Algebraic Statistics
Author: Seth Sullivant
Publisher: American Mathematical Society
ISBN: 1470475103
Category : Mathematics
Languages : en
Pages : 506
Book Description
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.
Publisher: American Mathematical Society
ISBN: 1470475103
Category : Mathematics
Languages : en
Pages : 506
Book Description
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.
Emerging Applications of Algebraic Geometry
Author: Mihai Putinar
Publisher: Springer Science & Business Media
ISBN: 0387096868
Category : Mathematics
Languages : en
Pages : 382
Book Description
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
Publisher: Springer Science & Business Media
ISBN: 0387096868
Category : Mathematics
Languages : en
Pages : 382
Book Description
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
Algebraic and Discrete Mathematical Methods for Modern Biology
Author: Raina Robeva
Publisher: Academic Press
ISBN: 0128012714
Category : Mathematics
Languages : en
Pages : 383
Book Description
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources
Publisher: Academic Press
ISBN: 0128012714
Category : Mathematics
Languages : en
Pages : 383
Book Description
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources
Algebraic Geometry and Statistical Learning Theory
Author: Sumio Watanabe
Publisher: Cambridge University Press
ISBN: 0521864674
Category : Computers
Languages : en
Pages : 295
Book Description
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Publisher: Cambridge University Press
ISBN: 0521864674
Category : Computers
Languages : en
Pages : 295
Book Description
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Mathematical Biology
Author: Ronald W. Shonkwiler
Publisher: Springer Science & Business Media
ISBN: 0387709843
Category : Science
Languages : en
Pages : 552
Book Description
This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.
Publisher: Springer Science & Business Media
ISBN: 0387709843
Category : Science
Languages : en
Pages : 552
Book Description
This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.
Mathematics of Bioinformatics
Author: Matthew He
Publisher: John Wiley & Sons
ISBN: 1118099524
Category : Computers
Languages : en
Pages : 231
Book Description
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
Publisher: John Wiley & Sons
ISBN: 1118099524
Category : Computers
Languages : en
Pages : 231
Book Description
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
An Introduction to Algebraic Statistics with Tensors
Author: Cristiano Bocci
Publisher: Springer Nature
ISBN: 3030246248
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book provides an introduction to various aspects of Algebraic Statistics with the principal aim of supporting Master’s and PhD students who wish to explore the algebraic point of view regarding recent developments in Statistics. The focus is on the background needed to explore the connections among discrete random variables. The main objects that encode these relations are multilinear matrices, i.e., tensors. The book aims to settle the basis of the correspondence between properties of tensors and their translation in Algebraic Geometry. It is divided into three parts, on Algebraic Statistics, Multilinear Algebra, and Algebraic Geometry. The primary purpose is to describe a bridge between the three theories, so that results and problems in one theory find a natural translation to the others. This task requires, from the statistical point of view, a rather unusual, but algebraically natural, presentation of random variables and their main classical features. The third part of the book can be considered as a short, almost self-contained, introduction to the basic concepts of algebraic varieties, which are part of the fundamental background for all who work in Algebraic Statistics.
Publisher: Springer Nature
ISBN: 3030246248
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book provides an introduction to various aspects of Algebraic Statistics with the principal aim of supporting Master’s and PhD students who wish to explore the algebraic point of view regarding recent developments in Statistics. The focus is on the background needed to explore the connections among discrete random variables. The main objects that encode these relations are multilinear matrices, i.e., tensors. The book aims to settle the basis of the correspondence between properties of tensors and their translation in Algebraic Geometry. It is divided into three parts, on Algebraic Statistics, Multilinear Algebra, and Algebraic Geometry. The primary purpose is to describe a bridge between the three theories, so that results and problems in one theory find a natural translation to the others. This task requires, from the statistical point of view, a rather unusual, but algebraically natural, presentation of random variables and their main classical features. The third part of the book can be considered as a short, almost self-contained, introduction to the basic concepts of algebraic varieties, which are part of the fundamental background for all who work in Algebraic Statistics.