Author: Harry Pollard
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175
Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
The Theory of Algebraic Numbers: Second Edition
Author: Harry Pollard
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175
Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175
Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
Lectures on the Theory of Algebraic Numbers
Author: E. T. Hecke
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251
Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251
Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
Number Theory
Author: Helmut Koch
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Classical Theory of Algebraic Numbers
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
A Classical Invitation to Algebraic Numbers and Class Fields
Author: Harvey Cohn
Publisher: Springer Science & Business Media
ISBN: 1461299500
Category : Mathematics
Languages : en
Pages : 344
Book Description
"Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"
Publisher: Springer Science & Business Media
ISBN: 1461299500
Category : Mathematics
Languages : en
Pages : 344
Book Description
"Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"
A Conversational Introduction to Algebraic Number Theory
Author: Paul Pollack
Publisher: American Mathematical Soc.
ISBN: 1470436531
Category : Mathematics
Languages : en
Pages : 329
Book Description
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
Publisher: American Mathematical Soc.
ISBN: 1470436531
Category : Mathematics
Languages : en
Pages : 329
Book Description
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
Algebraic Numbers and Algebraic Functions
Author: Emil Artin
Publisher: American Mathematical Soc.
ISBN: 0821840754
Category : Mathematics
Languages : en
Pages : 366
Book Description
Originated from the notes of a course given at Princeton University in 1950-1951, this text offers an introduction to algebraic numbers and algebraic functions. It starts with the general theory of valuation fields, proceeds to the local class field theory, and then to the theory of function fields in one variable.
Publisher: American Mathematical Soc.
ISBN: 0821840754
Category : Mathematics
Languages : en
Pages : 366
Book Description
Originated from the notes of a course given at Princeton University in 1950-1951, this text offers an introduction to algebraic numbers and algebraic functions. It starts with the general theory of valuation fields, proceeds to the local class field theory, and then to the theory of function fields in one variable.
Theory of Algebraic Integers
Author: Richard Dedekind
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170
Book Description
A translation of a classic work by one of the truly great figures of mathematics.
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170
Book Description
A translation of a classic work by one of the truly great figures of mathematics.
Algebraic Theory of Numbers. (AM-1), Volume 1
Author: Hermann Weyl
Publisher: Princeton University Press
ISBN: 140088280X
Category : Mathematics
Languages : en
Pages : 240
Book Description
In this, one of the first books to appear in English on the theory of numbers, the eminent mathematician Hermann Weyl explores fundamental concepts in arithmetic. The book begins with the definitions and properties of algebraic fields, which are relied upon throughout. The theory of divisibility is then discussed, from an axiomatic viewpoint, rather than by the use of ideals. There follows an introduction to p-adic numbers and their uses, which are so important in modern number theory, and the book culminates with an extensive examination of algebraic number fields. Weyl's own modest hope, that the work "will be of some use," has more than been fulfilled, for the book's clarity, succinctness, and importance rank it as a masterpiece of mathematical exposition.
Publisher: Princeton University Press
ISBN: 140088280X
Category : Mathematics
Languages : en
Pages : 240
Book Description
In this, one of the first books to appear in English on the theory of numbers, the eminent mathematician Hermann Weyl explores fundamental concepts in arithmetic. The book begins with the definitions and properties of algebraic fields, which are relied upon throughout. The theory of divisibility is then discussed, from an axiomatic viewpoint, rather than by the use of ideals. There follows an introduction to p-adic numbers and their uses, which are so important in modern number theory, and the book culminates with an extensive examination of algebraic number fields. Weyl's own modest hope, that the work "will be of some use," has more than been fulfilled, for the book's clarity, succinctness, and importance rank it as a masterpiece of mathematical exposition.
A Brief Guide to Algebraic Number Theory
Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.