Algebraic Number Theory and Related Topics 2008 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Algebraic Number Theory and Related Topics 2008 PDF full book. Access full book title Algebraic Number Theory and Related Topics 2008 by 中村博昭. Download full books in PDF and EPUB format.

Algebraic Number Theory and Related Topics 2008

Algebraic Number Theory and Related Topics 2008 PDF Author: 中村博昭
Publisher:
ISBN:
Category : Algebraic number theory
Languages : en
Pages : 336

Book Description


Algebraic Number Theory and Related Topics 2008

Algebraic Number Theory and Related Topics 2008 PDF Author: 中村博昭
Publisher:
ISBN:
Category : Algebraic number theory
Languages : en
Pages : 336

Book Description


Problems in Algebraic Number Theory

Problems in Algebraic Number Theory PDF Author: M. Ram Murty
Publisher: Springer Science & Business Media
ISBN: 0387269983
Category : Mathematics
Languages : en
Pages : 354

Book Description
The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Cohomology of Number Fields

Cohomology of Number Fields PDF Author: Jürgen Neukirch
Publisher: Springer Science & Business Media
ISBN: 3540378898
Category : Mathematics
Languages : en
Pages : 831

Book Description
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

Algebraic Theory of Numbers

Algebraic Theory of Numbers PDF Author: Pierre Samuel
Publisher: Dover Books on Mathematics
ISBN: 9780486466668
Category : Mathematics
Languages : en
Pages : 0

Book Description
Algebraic number theory introduces students to new algebraic notions as well as related concepts: groups, rings, fields, ideals, quotient rings, and quotient fields. This text covers the basics, from divisibility theory in principal ideal domains to the unit theorem, finiteness of the class number, and Hilbert ramification theory. 1970 edition.

Modular Forms and Related Topics in Number Theory

Modular Forms and Related Topics in Number Theory PDF Author: B. Ramakrishnan
Publisher: Springer Nature
ISBN: 9811587191
Category : Mathematics
Languages : en
Pages : 240

Book Description
This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.

Algebraic Number Theory

Algebraic Number Theory PDF Author: Jürgen Neukirch
Publisher: Springer
ISBN: 9783642084737
Category : Mathematics
Languages : en
Pages : 0

Book Description
This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.

Number Theory

Number Theory PDF Author: Takashi Aoki
Publisher: World Scientific
ISBN: 9814289922
Category : Mathematics
Languages : en
Pages : 267

Book Description
This volume aims at collecting survey papers which give broad and enlightening perspectives of various aspects of number theory. Kitaoka''s paper is a continuation of his earlier paper published in the last proceedings and pushes the research forward. Browning''s paper introduces a new direction of research on analytic number theory OCo quantitative theory of some surfaces and Bruedern et al ''s paper details state-of-the-art affairs of additive number theory. There are two papers on modular forms OCo Kohnen''s paper describes generalized modular forms (GMF) which has some applications in conformal field theory, while Liu''s paper is very useful for readers who want to have a quick introduction to Maass forms and some analytic-number-theoretic problems related to them. Matsumoto et al ''s paper gives a very thorough survey on functional relations of root system zeta-functions, HoshiOCoMiyake''s paper is a continuation of Miyake''s long and fruitful research on generic polynomials and gives rise to related Diophantine problems, and Jia''s paper surveys some dynamical aspects of a special arithmetic function connected with the distribution of prime numbers. There are two papers of collections of problems by Shparlinski on exponential and character sums and Schinzel on polynomials which will serve as an aid for finding suitable research problems. Yamamura''s paper is a complete bibliography on determinant expressions for a certain class number and will be useful to researchers. Thus the book gives a good-balance of classical and modern aspects in number theory and will be useful to researchers including enthusiastic graduate students. Sample Chapter(s). Chapter 1: Resent Progress on the Quantitative Arithmetic of Del Pezzo Surfaces (329 KB). Contents: Recent Progress on the Quantitative Arithmetic of Del Pezzo Surfaces (T D Browning); Additive Representation in Thin Sequences, VIII: Diophantine Inequalities in Review (J Brdern et al.); Recent Progress on Dynamics of a Special Arithmetic Function (C-H Jia); Some Diophantine Problems Arising from the Isomorphism Problem of Generic Polynomials (A Hoshi & K Miyake); A Statistical Relation of Roots of a Polynomial in Different Local Fields II (Y Kitaoka); Generalized Modular Functions and Their Fourier Coefficients (W Kohnen); Functional Relations for Zeta-Functions of Root Systems (Y Komori et al.); A Quick Introduction to Maass Forms (J-Y Liu); The Number of Non-Zero Coefficients of a Polynomial-Solved and Unsolved Problems (A Schinzel); Open Problems on Exponential and Character Sums (I E Shparlinski); Errata to OC A General Modular Relation in Analytic Number TheoryOCO (H Tsukada); Bibliography on Determinantal Expressions of Relative Class Numbers of Imaginary Abelian Number Fields (K Yamamura). Readership: Graduate students and researchers in mathematics.

Number Theory 1

Number Theory 1 PDF Author: Kazuya Kato
Publisher: American Mathematical Soc.
ISBN: 9780821808634
Category : Mathematics
Languages : en
Pages : 180

Book Description
This is the English translation of the original Japanese book. In this volume, "Fermat's Dream", core theories in modern number theory are introduced. Developments are given in elliptic curves, $p$-adic numbers, the $\zeta$-function, and the number fields. This work presents an elegant perspective on the wonder of numbers. Number Theory 2 on class field theory, and Number Theory 3 on Iwasawa theory and the theory of modular forms, are forthcoming in the series.

Analytic Number Theory, Approximation Theory, and Special Functions

Analytic Number Theory, Approximation Theory, and Special Functions PDF Author: Gradimir V. Milovanović
Publisher: Springer
ISBN: 149390258X
Category : Mathematics
Languages : en
Pages : 873

Book Description
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.

Topics from the Theory of Numbers

Topics from the Theory of Numbers PDF Author: Emil Grosswald
Publisher: Springer Science & Business Media
ISBN: 0817648380
Category : Mathematics
Languages : en
Pages : 336

Book Description
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.