Author: Paul C. Rosenbloom
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 234
Book Description
"This book is intended for readers who, while mature mathematically, have no knowledge of mathematical logic. We attempt to introduce the reader to the most important approaches to the subject, and, wherever possible within the limitations of space which we have set for ourselves, to give at least a few nontrivial results illustrating each of the important methods for attacking logical problems"--Preface.
The Elements of Mathematical Logic
Author: Paul C. Rosenbloom
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 234
Book Description
"This book is intended for readers who, while mature mathematically, have no knowledge of mathematical logic. We attempt to introduce the reader to the most important approaches to the subject, and, wherever possible within the limitations of space which we have set for ourselves, to give at least a few nontrivial results illustrating each of the important methods for attacking logical problems"--Preface.
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 234
Book Description
"This book is intended for readers who, while mature mathematically, have no knowledge of mathematical logic. We attempt to introduce the reader to the most important approaches to the subject, and, wherever possible within the limitations of space which we have set for ourselves, to give at least a few nontrivial results illustrating each of the important methods for attacking logical problems"--Preface.
Technical Translations
Mathematical Methods in Linguistics
Author: Barbara B.H. Partee
Publisher: Springer Science & Business Media
ISBN: 9789027722454
Category : Language Arts & Disciplines
Languages : en
Pages : 692
Book Description
Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.
Publisher: Springer Science & Business Media
ISBN: 9789027722454
Category : Language Arts & Disciplines
Languages : en
Pages : 692
Book Description
Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.
Introduction to Mathematical Logic
Author: Elliot Mendelsohn
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
A Course in Mathematical Logic for Mathematicians
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
A Concise Introduction to Mathematical Logic
Author: Wolfgang Rautenberg
Publisher: Springer
ISBN: 1441912215
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
Publisher: Springer
ISBN: 1441912215
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
Scientific and Technical Aerospace Reports
Research in Progress
Mathematical Logic In The 20th Century
Author: Gerald E Sacks
Publisher: World Scientific
ISBN: 9814490199
Category : Mathematics
Languages : en
Pages : 710
Book Description
This invaluable book is a collection of 31 important — both in ideas and results — papers published by mathematical logicians in the 20th Century. The papers have been selected by Professor Gerald E Sacks. Some of the authors are Gödel, Kleene, Tarski, A Robinson, Kreisel, Cohen, Morley, Shelah, Hrushovski and Woodin.
Publisher: World Scientific
ISBN: 9814490199
Category : Mathematics
Languages : en
Pages : 710
Book Description
This invaluable book is a collection of 31 important — both in ideas and results — papers published by mathematical logicians in the 20th Century. The papers have been selected by Professor Gerald E Sacks. Some of the authors are Gödel, Kleene, Tarski, A Robinson, Kreisel, Cohen, Morley, Shelah, Hrushovski and Woodin.
Algebraic Methods in Semantics
Author: M. Nivat
Publisher: CUP Archive
ISBN: 9780521267939
Category : Computers
Languages : en
Pages : 664
Book Description
This book, which contains contributions from leading researchers in France, USA and Great Britain, gives detailed accounts of a variety of methods for describing the semantics of programming languages, i.e. for attaching to programs mathematical objects that encompass their meaning. Consideration is given to both denotational semantics, where the meaning of a program is regarded as a function from inputs to outputs, and operational semantics, where the meaning includes the sequence of states or terms generated internally during the computation. The major problems considered include equivalence relations between operational and denotational semantics, rules for obtaining optimal computations (especially for nondeterministic programs), equivalence of programs, meaning-preserving transformations of programs and program proving by assertions. Such problems are discussed for a variety of programming languages and formalisms, and a wealth of mathematical tools is described.
Publisher: CUP Archive
ISBN: 9780521267939
Category : Computers
Languages : en
Pages : 664
Book Description
This book, which contains contributions from leading researchers in France, USA and Great Britain, gives detailed accounts of a variety of methods for describing the semantics of programming languages, i.e. for attaching to programs mathematical objects that encompass their meaning. Consideration is given to both denotational semantics, where the meaning of a program is regarded as a function from inputs to outputs, and operational semantics, where the meaning includes the sequence of states or terms generated internally during the computation. The major problems considered include equivalence relations between operational and denotational semantics, rules for obtaining optimal computations (especially for nondeterministic programs), equivalence of programs, meaning-preserving transformations of programs and program proving by assertions. Such problems are discussed for a variety of programming languages and formalisms, and a wealth of mathematical tools is described.