Algebraic Analysis of Singular Perturbation Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Algebraic Analysis of Singular Perturbation Theory PDF full book. Access full book title Algebraic Analysis of Singular Perturbation Theory by Takahiro Kawai. Download full books in PDF and EPUB format.

Algebraic Analysis of Singular Perturbation Theory

Algebraic Analysis of Singular Perturbation Theory PDF Author: Takahiro Kawai
Publisher: American Mathematical Soc.
ISBN: 9780821835470
Category : Mathematics
Languages : en
Pages : 148

Book Description
The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.

Algebraic Analysis of Singular Perturbation Theory

Algebraic Analysis of Singular Perturbation Theory PDF Author: Takahiro Kawai
Publisher: American Mathematical Soc.
ISBN: 9780821835470
Category : Mathematics
Languages : en
Pages : 148

Book Description
The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.

Perturbations

Perturbations PDF Author: James A. Murdock
Publisher: SIAM
ISBN: 9781611971095
Category : Mathematics
Languages : en
Pages : 358

Book Description
Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.

A First Look at Perturbation Theory

A First Look at Perturbation Theory PDF Author: James G. Simmonds
Publisher: Courier Corporation
ISBN: 0486315584
Category : Mathematics
Languages : en
Pages : 162

Book Description
Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.

Perturbation Theory for Matrix Equations

Perturbation Theory for Matrix Equations PDF Author: M. Konstantinov
Publisher: Gulf Professional Publishing
ISBN: 0080538673
Category : Mathematics
Languages : en
Pages : 443

Book Description
The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis.In this book a general perturbation theory for matrix algebraic equations is presented. Local and non-local perturbation bounds are derived for general types of matrix equations as well as for the most important equations arising in linear algebra and control theory. A large number of examples, tables and figures is included in order to illustrate the perturbation techniques and bounds.Key features:• The first book in this field • Can be used by a variety of specialists • Material is self-contained • Results can be used in the development of reliable computational algorithms • A large number of examples and graphical illustrations are given • Written by prominent specialists in the field

Perturbation theory for linear operators

Perturbation theory for linear operators PDF Author: Tosio Kato
Publisher: Springer Science & Business Media
ISBN: 3662126788
Category : Mathematics
Languages : en
Pages : 610

Book Description


Solving Transcendental Equations

Solving Transcendental Equations PDF Author: John P. Boyd
Publisher: SIAM
ISBN: 161197352X
Category : Mathematics
Languages : en
Pages : 446

Book Description
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.

Algebraic Analysis of Differential Equations

Algebraic Analysis of Differential Equations PDF Author: T. Aoki
Publisher: Springer Science & Business Media
ISBN: 4431732403
Category : Mathematics
Languages : en
Pages : 349

Book Description
This volume contains 23 articles on algebraic analysis of differential equations and related topics, most of which were presented as papers at the conference "Algebraic Analysis of Differential Equations – from Microlocal Analysis to Exponential Asymptotics" at Kyoto University in 2005. This volume is dedicated to Professor Takahiro Kawai, who is one of the creators of microlocal analysis and who introduced the technique of microlocal analysis into exponential asymptotics.

Perturbation Methods

Perturbation Methods PDF Author: E. J. Hinch
Publisher: Cambridge University Press
ISBN: 9780521378970
Category : Mathematics
Languages : en
Pages : 178

Book Description
A textbook presenting the theory and underlying techniques of perturbation methods in a manner suitable for senior undergraduates from a broad range of disciplines.

Singular Perturbation Methods in Control

Singular Perturbation Methods in Control PDF Author: Petar Kokotovic
Publisher: SIAM
ISBN: 9781611971118
Category : Mathematics
Languages : en
Pages : 386

Book Description
Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.

Singular Perturbation Theory

Singular Perturbation Theory PDF Author: Lindsay A. Skinner
Publisher: Springer Science & Business Media
ISBN: 1441999582
Category : Mathematics
Languages : en
Pages : 95

Book Description
This book is a rigorous presentation of the method of matched asymptotic expansions, the primary tool for attacking singular perturbation problems. A knowledge of conventional asymptotic analysis is assumed. The first chapter introduces the theory and is followed by four chapters of applications to ordinary differential equation problems of increasing complexity. Exercises are included as well as several Maple programs for computing the terms of the various asymptotic expansions that arise in solving the problems.