Author: Peter H. Selby
Publisher: John Wiley & Sons
ISBN: 0471530123
Category : Mathematics
Languages : en
Pages : 336
Book Description
Practical Algebra If you studied algebra years ago and now need arefresher course in order to use algebraic principles on the job,or if you're a student who needs an introduction to the subject,here's the perfect book for you. Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical,real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio,proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry,and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.
Practical Algebra
Author: Peter H. Selby
Publisher: John Wiley & Sons
ISBN: 0471530123
Category : Mathematics
Languages : en
Pages : 336
Book Description
Practical Algebra If you studied algebra years ago and now need arefresher course in order to use algebraic principles on the job,or if you're a student who needs an introduction to the subject,here's the perfect book for you. Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical,real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio,proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry,and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.
Publisher: John Wiley & Sons
ISBN: 0471530123
Category : Mathematics
Languages : en
Pages : 336
Book Description
Practical Algebra If you studied algebra years ago and now need arefresher course in order to use algebraic principles on the job,or if you're a student who needs an introduction to the subject,here's the perfect book for you. Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical,real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio,proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry,and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.
Linear Algebra Done Right
Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Practical Algebra
Author: Bobson Wong
Publisher: John Wiley & Sons
ISBN: 1119715407
Category : Mathematics
Languages : en
Pages : 516
Book Description
The most practical, complete, and accessible guide for understanding algebra If you want to make sense of algebra, check out Practical Algebra: A Self-Teaching Guide. Written by two experienced classroom teachers, this Third Edition is completely revised to align with the Common Core Algebra I math standards used in many states. You’ll get an overview of solving linear and quadratic equations, using ratios and proportions, decoding word problems, graphing and interpreting functions, modeling the real world with statistics, and other concepts found in today’s algebra courses. This book also contains a brief review of pre-algebra topics, including arithmetic and fractions. It has concrete strategies that help diverse students to succeed, such as: over 500 images and tables that illustrate important concepts over 200 model examples with complete solutions almost 1,500 exercises with answers so you can monitor your progress Practical Algebra emphasizes making connections to what you already know and what you’ll learn in the future. You’ll learn to see algebra as a logical and consistent system of ideas and see how it connects to other mathematical topics. This book makes math more accessible by treating it as a language. It has tips for pronouncing and using mathematical notation, a glossary of commonly used terms in algebra, and a glossary of symbols. Along the way, you’ll discover how different cultures around the world over thousands of years developed many of the mathematical ideas we use today. Since students nowadays can use a variety of tools to handle complex modeling tasks, this book contains technology tips that apply no matter what device you’re using. It also describes strategies for avoiding common mistakes that students make. By working through Practical Algebra, you’ll learn straightforward techniques for solving problems, and understand why these techniques work so you’ll retain what you’ve learned. You (or your students) will come away with better scores on algebra tests and a greater confidence in your ability to do math.
Publisher: John Wiley & Sons
ISBN: 1119715407
Category : Mathematics
Languages : en
Pages : 516
Book Description
The most practical, complete, and accessible guide for understanding algebra If you want to make sense of algebra, check out Practical Algebra: A Self-Teaching Guide. Written by two experienced classroom teachers, this Third Edition is completely revised to align with the Common Core Algebra I math standards used in many states. You’ll get an overview of solving linear and quadratic equations, using ratios and proportions, decoding word problems, graphing and interpreting functions, modeling the real world with statistics, and other concepts found in today’s algebra courses. This book also contains a brief review of pre-algebra topics, including arithmetic and fractions. It has concrete strategies that help diverse students to succeed, such as: over 500 images and tables that illustrate important concepts over 200 model examples with complete solutions almost 1,500 exercises with answers so you can monitor your progress Practical Algebra emphasizes making connections to what you already know and what you’ll learn in the future. You’ll learn to see algebra as a logical and consistent system of ideas and see how it connects to other mathematical topics. This book makes math more accessible by treating it as a language. It has tips for pronouncing and using mathematical notation, a glossary of commonly used terms in algebra, and a glossary of symbols. Along the way, you’ll discover how different cultures around the world over thousands of years developed many of the mathematical ideas we use today. Since students nowadays can use a variety of tools to handle complex modeling tasks, this book contains technology tips that apply no matter what device you’re using. It also describes strategies for avoiding common mistakes that students make. By working through Practical Algebra, you’ll learn straightforward techniques for solving problems, and understand why these techniques work so you’ll retain what you’ve learned. You (or your students) will come away with better scores on algebra tests and a greater confidence in your ability to do math.
All the Math You'll Ever Need
Author: Steve Slavin
Publisher: John Wiley & Sons
ISBN: 0471674028
Category : Mathematics
Languages : en
Pages : 241
Book Description
A sharp mind, like a healthy body, is subject to the same ruleof nature: Use it or lose it Need a calculator just to work out a 15 percent service charge? Not exactly sure how to get the calculator to give you the figureyou need? Turn to this revised and updated edition of All the MathYou'll Ever Need, the friendliest, funniest, and easiest workoutprogram around. In no time, you'll have total command of all the powerfulmathematical tools needed to make numbers work for you. In adollars-and-cents, bottom-line world, where numbers influenceeverything, none of us can afford to let our math skills atrophy.This step-by-step personal math trainer: Refreshes practical math skills for your personal andprofessional needs, with examples based on everyday situations. Offers straightforward techniques for working with decimals and fractions. Demonstrates simple ways to figure discounts, calculatemortgage interest rates, and work out time, rate, and distance problems. Contains no complex formulas and no unnecessary technical terms.
Publisher: John Wiley & Sons
ISBN: 0471674028
Category : Mathematics
Languages : en
Pages : 241
Book Description
A sharp mind, like a healthy body, is subject to the same ruleof nature: Use it or lose it Need a calculator just to work out a 15 percent service charge? Not exactly sure how to get the calculator to give you the figureyou need? Turn to this revised and updated edition of All the MathYou'll Ever Need, the friendliest, funniest, and easiest workoutprogram around. In no time, you'll have total command of all the powerfulmathematical tools needed to make numbers work for you. In adollars-and-cents, bottom-line world, where numbers influenceeverything, none of us can afford to let our math skills atrophy.This step-by-step personal math trainer: Refreshes practical math skills for your personal andprofessional needs, with examples based on everyday situations. Offers straightforward techniques for working with decimals and fractions. Demonstrates simple ways to figure discounts, calculatemortgage interest rates, and work out time, rate, and distance problems. Contains no complex formulas and no unnecessary technical terms.
A Course in Algebra
Author: Ėrnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category : Mathematics
Languages : en
Pages : 532
Book Description
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category : Mathematics
Languages : en
Pages : 532
Book Description
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Abstract Algebra
Author: Dan Saracino
Publisher: Waveland Press
ISBN: 1478610131
Category : Mathematics
Languages : en
Pages : 320
Book Description
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
Publisher: Waveland Press
ISBN: 1478610131
Category : Mathematics
Languages : en
Pages : 320
Book Description
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
Algebra: Chapter 0
Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Linear Algebra and Differential Equations
Author: Alexander Givental
Publisher: American Mathematical Soc.
ISBN: 9780821828502
Category : Algebras, Linear
Languages : en
Pages : 150
Book Description
The material presented in this book corresponds to a semester-long course, ``Linear Algebra and Differential Equations'', taught to sophomore students at UC Berkeley. In contrast with typical undergraduate texts, the book offers a unifying point of view on the subject, namely that linear algebra solves several clearly-posed classification problems about such geometric objects as quadratic forms and linear transformations. This attractive viewpoint on the classical theory agrees well with modern tendencies in advanced mathematics and is shared by many research mathematicians. However, the idea of classification seldom finds its way to basic programs in mathematics, and is usually unfamiliar to undergraduates. To meet the challenge, the book first guides the reader through the entire agenda of linear algebra in the elementary environment of two-dimensional geometry, and prior to spelling out the general idea and employing it in higher dimensions, shows how it works in applications such as linear ODE systems or stability of equilibria. Appropriate as a text for regular junior and honors sophomore level college classes, the book is accessible to high school students familiar with basic calculus, and can also be useful to engineering graduate students.
Publisher: American Mathematical Soc.
ISBN: 9780821828502
Category : Algebras, Linear
Languages : en
Pages : 150
Book Description
The material presented in this book corresponds to a semester-long course, ``Linear Algebra and Differential Equations'', taught to sophomore students at UC Berkeley. In contrast with typical undergraduate texts, the book offers a unifying point of view on the subject, namely that linear algebra solves several clearly-posed classification problems about such geometric objects as quadratic forms and linear transformations. This attractive viewpoint on the classical theory agrees well with modern tendencies in advanced mathematics and is shared by many research mathematicians. However, the idea of classification seldom finds its way to basic programs in mathematics, and is usually unfamiliar to undergraduates. To meet the challenge, the book first guides the reader through the entire agenda of linear algebra in the elementary environment of two-dimensional geometry, and prior to spelling out the general idea and employing it in higher dimensions, shows how it works in applications such as linear ODE systems or stability of equilibria. Appropriate as a text for regular junior and honors sophomore level college classes, the book is accessible to high school students familiar with basic calculus, and can also be useful to engineering graduate students.
Prealgebra Solutions Manual
Author: Richard Rusczyk
Publisher:
ISBN: 9781934124222
Category : Algebra
Languages : en
Pages : 224
Book Description
Publisher:
ISBN: 9781934124222
Category : Algebra
Languages : en
Pages : 224
Book Description
Linear Algebra for Everyone
Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
ISBN: 9781733146630
Category : Mathematics
Languages : en
Pages : 368
Book Description
Linear algebra has become the subject to know for people in quantitative disciplines of all kinds. No longer the exclusive domain of mathematicians and engineers, it is now used everywhere there is data and everybody who works with data needs to know more. This new book from Professor Gilbert Strang, author of the acclaimed Introduction to Linear Algebra, now in its fifth edition, makes linear algebra accessible to everybody, not just those with a strong background in mathematics. It takes a more active start, beginning by finding independent columns of small matrices, leading to the key concepts of linear combinations and rank and column space. From there it passes on to the classical topics of solving linear equations, orthogonality, linear transformations and subspaces, all clearly explained with many examples and exercises. The last major topics are eigenvalues and the important singular value decomposition, illustrated with applications to differential equations and image compression. A final optional chapter explores the ideas behind deep learning.
Publisher: Wellesley-Cambridge Press
ISBN: 9781733146630
Category : Mathematics
Languages : en
Pages : 368
Book Description
Linear algebra has become the subject to know for people in quantitative disciplines of all kinds. No longer the exclusive domain of mathematicians and engineers, it is now used everywhere there is data and everybody who works with data needs to know more. This new book from Professor Gilbert Strang, author of the acclaimed Introduction to Linear Algebra, now in its fifth edition, makes linear algebra accessible to everybody, not just those with a strong background in mathematics. It takes a more active start, beginning by finding independent columns of small matrices, leading to the key concepts of linear combinations and rank and column space. From there it passes on to the classical topics of solving linear equations, orthogonality, linear transformations and subspaces, all clearly explained with many examples and exercises. The last major topics are eigenvalues and the important singular value decomposition, illustrated with applications to differential equations and image compression. A final optional chapter explores the ideas behind deep learning.