Author: Wolfgang Kreutzer
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 704
Book Description
Programming for Artificial Intelligence
Author: Wolfgang Kreutzer
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 704
Book Description
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 704
Book Description
Ascend AI Processor Architecture and Programming
Author: Xiaoyao Liang
Publisher: Elsevier
ISBN: 012823489X
Category : Computers
Languages : en
Pages : 310
Book Description
Ascend AI Processor Architecture and Programming: Principles and Applications of CANN offers in-depth AI applications using Huawei's Ascend chip, presenting and analyzing the unique performance and attributes of this processor. The title introduces the fundamental theory of AI, the software and hardware architecture of the Ascend AI processor, related tools and programming technology, and typical application cases. It demonstrates internal software and hardware design principles, system tools and programming techniques for the processor, laying out the elements of AI programming technology needed by researchers developing AI applications. Chapters cover the theoretical fundamentals of AI and deep learning, the state of the industry, including the current state of Neural Network Processors, deep learning frameworks, and a deep learning compilation framework, the hardware architecture of the Ascend AI processor, programming methods and practices for developing the processor, and finally, detailed case studies on data and algorithms for AI. - Presents the performance and attributes of the Huawei Ascend AI processor - Describes the software and hardware architecture of the Ascend processor - Lays out the elements of AI theory, processor architecture, and AI applications - Provides detailed case studies on data and algorithms for AI - Offers insights into processor architecture and programming to spark new AI applications
Publisher: Elsevier
ISBN: 012823489X
Category : Computers
Languages : en
Pages : 310
Book Description
Ascend AI Processor Architecture and Programming: Principles and Applications of CANN offers in-depth AI applications using Huawei's Ascend chip, presenting and analyzing the unique performance and attributes of this processor. The title introduces the fundamental theory of AI, the software and hardware architecture of the Ascend AI processor, related tools and programming technology, and typical application cases. It demonstrates internal software and hardware design principles, system tools and programming techniques for the processor, laying out the elements of AI programming technology needed by researchers developing AI applications. Chapters cover the theoretical fundamentals of AI and deep learning, the state of the industry, including the current state of Neural Network Processors, deep learning frameworks, and a deep learning compilation framework, the hardware architecture of the Ascend AI processor, programming methods and practices for developing the processor, and finally, detailed case studies on data and algorithms for AI. - Presents the performance and attributes of the Huawei Ascend AI processor - Describes the software and hardware architecture of the Ascend processor - Lays out the elements of AI theory, processor architecture, and AI applications - Provides detailed case studies on data and algorithms for AI - Offers insights into processor architecture and programming to spark new AI applications
The Application of Artificial Intelligence
Author: Zoltán Somogyi
Publisher: Springer Nature
ISBN: 3030600327
Category : Computers
Languages : en
Pages : 448
Book Description
This book presents a unique, understandable view of machine learning using many practical examples and access to free professional software and open source code. The user-friendly software can immediately be used to apply everything you learn in the book without the need for programming. After an introduction to machine learning and artificial intelligence, the chapters in Part II present deeper explanations of machine learning algorithms, performance evaluation of machine learning models, and how to consider data in machine learning environments. In Part III the author explains automatic speech recognition, and in Part IV biometrics recognition, face- and speaker-recognition. By Part V the author can then explain machine learning by example, he offers cases from real-world applications, problems, and techniques, such as anomaly detection and root cause analyses, business process improvement, detecting and predicting diseases, recommendation AI, several engineering applications, predictive maintenance, automatically classifying datasets, dimensionality reduction, and image recognition. Finally, in Part VI he offers a detailed explanation of the AI-TOOLKIT, software he developed that allows the reader to test and study the examples in the book and the application of machine learning in professional environments. The author introduces core machine learning concepts and supports these with practical examples of their use, so professionals will appreciate his approach and use the book for self-study. It will also be useful as a supplementary resource for advanced undergraduate and graduate courses on machine learning and artificial intelligence.
Publisher: Springer Nature
ISBN: 3030600327
Category : Computers
Languages : en
Pages : 448
Book Description
This book presents a unique, understandable view of machine learning using many practical examples and access to free professional software and open source code. The user-friendly software can immediately be used to apply everything you learn in the book without the need for programming. After an introduction to machine learning and artificial intelligence, the chapters in Part II present deeper explanations of machine learning algorithms, performance evaluation of machine learning models, and how to consider data in machine learning environments. In Part III the author explains automatic speech recognition, and in Part IV biometrics recognition, face- and speaker-recognition. By Part V the author can then explain machine learning by example, he offers cases from real-world applications, problems, and techniques, such as anomaly detection and root cause analyses, business process improvement, detecting and predicting diseases, recommendation AI, several engineering applications, predictive maintenance, automatically classifying datasets, dimensionality reduction, and image recognition. Finally, in Part VI he offers a detailed explanation of the AI-TOOLKIT, software he developed that allows the reader to test and study the examples in the book and the application of machine learning in professional environments. The author introduces core machine learning concepts and supports these with practical examples of their use, so professionals will appreciate his approach and use the book for self-study. It will also be useful as a supplementary resource for advanced undergraduate and graduate courses on machine learning and artificial intelligence.
Programming Game AI by Example
Author: Mat Buckland
Publisher: Jones & Bartlett Learning
ISBN: 9781556220784
Category : Computers
Languages : en
Pages : 522
Book Description
This book describes in detail many of the AI techniques used in modern computer games, explicity shows how to implement these practical techniques within the framework of several game developers with a practical foundation to game AI.
Publisher: Jones & Bartlett Learning
ISBN: 9781556220784
Category : Computers
Languages : en
Pages : 522
Book Description
This book describes in detail many of the AI techniques used in modern computer games, explicity shows how to implement these practical techniques within the framework of several game developers with a practical foundation to game AI.
Deep Learning for Coders with fastai and PyTorch
Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624
Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624
Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
AI and Machine Learning for Coders
Author: Laurence Moroney
Publisher: O'Reilly Media
ISBN: 1492078166
Category : Computers
Languages : en
Pages : 393
Book Description
If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving
Publisher: O'Reilly Media
ISBN: 1492078166
Category : Computers
Languages : en
Pages : 393
Book Description
If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving
Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Practical Artificial Intelligence with Swift
Author: Mars Geldard
Publisher: O'Reilly Media
ISBN: 1492044784
Category : Computers
Languages : en
Pages : 518
Book Description
Create and implement AI-based features in your Swift apps for iOS, macOS, tvOS, and watchOS. With this practical book, programmers and developers of all kinds will find a one-stop shop for AI and machine learning with Swift. Taking a task-based approach, you’ll learn how to build features that use powerful AI features to identify images, make predictions, generate content, recommend things, and more. AI is increasingly essential for every developer—and you don’t need to be a data scientist or mathematician to take advantage of it in your apps. Explore Swift-based AI and ML techniques for building applications. Learn where and how AI-driven features make sense. Inspect tools such as Apple’s Python-powered Turi Create and Google’s Swift for TensorFlow to train and build models. I: Fundamentals and Tools—Learn AI basics, our task-based approach, and discover how to build or find a dataset. II: Task Based AI—Build vision, audio, text, motion, and augmentation-related features; learn how to convert preexisting models. III: Beyond—Discover the theory behind task-based practice, explore AI and ML methods, and learn how you can build it all from scratch... if you want to
Publisher: O'Reilly Media
ISBN: 1492044784
Category : Computers
Languages : en
Pages : 518
Book Description
Create and implement AI-based features in your Swift apps for iOS, macOS, tvOS, and watchOS. With this practical book, programmers and developers of all kinds will find a one-stop shop for AI and machine learning with Swift. Taking a task-based approach, you’ll learn how to build features that use powerful AI features to identify images, make predictions, generate content, recommend things, and more. AI is increasingly essential for every developer—and you don’t need to be a data scientist or mathematician to take advantage of it in your apps. Explore Swift-based AI and ML techniques for building applications. Learn where and how AI-driven features make sense. Inspect tools such as Apple’s Python-powered Turi Create and Google’s Swift for TensorFlow to train and build models. I: Fundamentals and Tools—Learn AI basics, our task-based approach, and discover how to build or find a dataset. II: Task Based AI—Build vision, audio, text, motion, and augmentation-related features; learn how to convert preexisting models. III: Beyond—Discover the theory behind task-based practice, explore AI and ML methods, and learn how you can build it all from scratch... if you want to
AI and Machine Learning for On-Device Development
Author: Laurence Moroney
Publisher: "O'Reilly Media, Inc."
ISBN: 1098101715
Category : Computers
Languages : en
Pages : 329
Book Description
Chapter 2. Introduction to Computer Vision -- Using Neurons for Vision -- Your First Classifier: Recognizing Clothing Items -- The Data: Fashion MNIST -- A Model Architecture to Parse Fashion MNIST -- Coding the Fashion MNIST Model -- Transfer Learning for Computer Vision -- Summary -- Chapter 3. Introduction to ML Kit -- Building a Face Detection App on Android -- Step 1: Create the App with Android Studio -- Step 2: Add and Configure ML Kit -- Step 3: Define the User Interface -- Step 4: Add the Images as Assets -- Step 5: Load the UI with a Default Picture.
Publisher: "O'Reilly Media, Inc."
ISBN: 1098101715
Category : Computers
Languages : en
Pages : 329
Book Description
Chapter 2. Introduction to Computer Vision -- Using Neurons for Vision -- Your First Classifier: Recognizing Clothing Items -- The Data: Fashion MNIST -- A Model Architecture to Parse Fashion MNIST -- Coding the Fashion MNIST Model -- Transfer Learning for Computer Vision -- Summary -- Chapter 3. Introduction to ML Kit -- Building a Face Detection App on Android -- Step 1: Create the App with Android Studio -- Step 2: Add and Configure ML Kit -- Step 3: Define the User Interface -- Step 4: Add the Images as Assets -- Step 5: Load the UI with a Default Picture.
Artificial Intelligence with Python
Author: Alberto Artasanchez
Publisher: Packt Publishing Ltd
ISBN: 1839216077
Category : Computers
Languages : en
Pages : 619
Book Description
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1839216077
Category : Computers
Languages : en
Pages : 619
Book Description
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.