Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production PDF full book. Access full book title Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production by Satheesh K. Subramanian. Download full books in PDF and EPUB format.

Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production

Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production PDF Author: Satheesh K. Subramanian
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Sweet sorghum (Sorghum bicolor L. Moench) is an important bioenergy crop. There is a wide array of genetic diversity in sweet sorghum germplasm collections. However, information on traits associated with sugar yield, optimum harvesting time for maximum sugar yield, effects of abiotic stresses on sugar yield is scarce. The objectives of the present study were: to identify traits that are associated with sugar yield, to determine the optimum harvesting time for maximum sugar yield and to understand the physiological responses of different sweet sorghum genotypes to drought and high temperature. In order to meet these objectives, five independent field and greenhouse studies were conducted. Field experiments were conducted using 280 sweet sorghum germplasm and were evaluated for 2 years. From this study, 30 genotypes representing high and low sugar yielders were selected for the subsequent experiment. We observed a significant variation in physiological, morphological and sugar yield traits associated with biofuel production. In the selection experiment, investigations on the morphological, physiological attributes helped to identify those characters which influence or limit sugar yield in the sweet sorghum. Another field study was conducted to optimize the harvesting time for obtaining highest sugar and juice yields in sweet sorghum. Sweet sorghum variety M81E was harvested at ten growth stages. Our results suggest that the optimum time for harvesting of sweet sorghum cultivar M81E is between milk and hard dough stages when highest sugar yield was observed. Studies on different levels of water stress were studied under greenhouse conditions. Four sweet sorghum genotypes (Awanlek, Smith, Tracy and Wray) were subjected to three water stress treatments (100% pot capacity (PC); 70% PC and 30% PC) for 20 days at early seed filling (Milk) stage. The results showed that genotypes differed significantly for all growth and yield, biochemical and physiological traits. Severe water stress significantly decreased juice and sugar yields by decreasing net photosynthetic rate, transpiration rate, stomatal conductance and sucrose content in the stem juice. Genotypes Tracy and Wray produced significantly highest brix, stem fresh weight, juice and sugar yield under both irrigated and water stress conditions. In another greenhouse study, we quantified the effects of drought, high temperature, and their combinations on growth, physiology and yield of sweet sorghum genotypes. The same four genotypes above were subjected to four treatments, T1 - control, T2 - drought stress, T3 - high temperature stress and T4 - combination of drought and high temperature for 16 days after anthesis. The result showed that significant difference was observed for growth and yield traits, physiological traits and non-reducing and total sugar content in juice for genotypes and treatments. Among the genotypes Tracy recorded higher juice and sugar yield. Among the various treatments, combination of drought and high temperature was found to be more deleterious in reducing most of the biofuel traits followed by drought and high temperature stress. The above studies gave significant findings with regards to the identification of superior sweet sorghum germplasm, their tolerance capacity to different abiotic stresses, which allows better selection for the use of bioenergy production.

Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production

Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production PDF Author: Satheesh K. Subramanian
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Sweet sorghum (Sorghum bicolor L. Moench) is an important bioenergy crop. There is a wide array of genetic diversity in sweet sorghum germplasm collections. However, information on traits associated with sugar yield, optimum harvesting time for maximum sugar yield, effects of abiotic stresses on sugar yield is scarce. The objectives of the present study were: to identify traits that are associated with sugar yield, to determine the optimum harvesting time for maximum sugar yield and to understand the physiological responses of different sweet sorghum genotypes to drought and high temperature. In order to meet these objectives, five independent field and greenhouse studies were conducted. Field experiments were conducted using 280 sweet sorghum germplasm and were evaluated for 2 years. From this study, 30 genotypes representing high and low sugar yielders were selected for the subsequent experiment. We observed a significant variation in physiological, morphological and sugar yield traits associated with biofuel production. In the selection experiment, investigations on the morphological, physiological attributes helped to identify those characters which influence or limit sugar yield in the sweet sorghum. Another field study was conducted to optimize the harvesting time for obtaining highest sugar and juice yields in sweet sorghum. Sweet sorghum variety M81E was harvested at ten growth stages. Our results suggest that the optimum time for harvesting of sweet sorghum cultivar M81E is between milk and hard dough stages when highest sugar yield was observed. Studies on different levels of water stress were studied under greenhouse conditions. Four sweet sorghum genotypes (Awanlek, Smith, Tracy and Wray) were subjected to three water stress treatments (100% pot capacity (PC); 70% PC and 30% PC) for 20 days at early seed filling (Milk) stage. The results showed that genotypes differed significantly for all growth and yield, biochemical and physiological traits. Severe water stress significantly decreased juice and sugar yields by decreasing net photosynthetic rate, transpiration rate, stomatal conductance and sucrose content in the stem juice. Genotypes Tracy and Wray produced significantly highest brix, stem fresh weight, juice and sugar yield under both irrigated and water stress conditions. In another greenhouse study, we quantified the effects of drought, high temperature, and their combinations on growth, physiology and yield of sweet sorghum genotypes. The same four genotypes above were subjected to four treatments, T1 - control, T2 - drought stress, T3 - high temperature stress and T4 - combination of drought and high temperature for 16 days after anthesis. The result showed that significant difference was observed for growth and yield traits, physiological traits and non-reducing and total sugar content in juice for genotypes and treatments. Among the genotypes Tracy recorded higher juice and sugar yield. Among the various treatments, combination of drought and high temperature was found to be more deleterious in reducing most of the biofuel traits followed by drought and high temperature stress. The above studies gave significant findings with regards to the identification of superior sweet sorghum germplasm, their tolerance capacity to different abiotic stresses, which allows better selection for the use of bioenergy production.

Characterization of Improved Sweet Sorghum Cultivars

Characterization of Improved Sweet Sorghum Cultivars PDF Author: P. Srinivasa Rao
Publisher: Springer Science & Business Media
ISBN: 8132207831
Category : Technology & Engineering
Languages : en
Pages : 134

Book Description
A number of driving forces, including the soaring global crude oil prices and environmental concerns in both developed and developing nations has triggered a renewed interest in the recent years on the R&D of biofuel crops. In this regard, many countries across the globe are investing heavily in the bioenergy sector for R&D to increase their energy security and reduce their dependence on imported fossil fuels. Currently, most of the biofuel requirement is met by sugarcane in Brazil and corn in the United States, while biodiesel from rapeseed oil in Europe. Sweet sorghum has been identified as a unique biofuel feedstock in India since it is well adapted to Indian agro-climatic conditions and more importantly it does not jeopardize food security at the cost of fuel. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered as a SMART new generation energy crop as it can accumulate sugars in its stalks similar to sugarcane, but without food¬¬-fuel trade-offs and can be cultivated in almost all temperate and tropical climatic conditions and has many other advantages. The grain can be harvested from the panicles at maturity. There is no single publication detailing the agronomic and biochemical traits of tropical sweet sorghum cultivars and hybrid parents. Hence, an attempt is made in this publication- “Characterization of improved sweet sorghum cultivars” to detail the complete description of cultivars. This book serves as a ready reference on the detailed characterization of different improved sweet sorghum genotypes following the PPVFRA guidelines for the researchers, entrepreneurs, farmers and other stakeholders to identify the available sweet sorghum cultivars and understand their yield potential in tropics.

Advances in crop biomass production based on multi-omics approach

Advances in crop biomass production based on multi-omics approach PDF Author: Yin Li
Publisher: Frontiers Media SA
ISBN: 2832523358
Category : Science
Languages : en
Pages : 145

Book Description


Sorghum

Sorghum PDF Author: Ignacio A. Ciampitti
Publisher: John Wiley & Sons
ISBN: 0891186271
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
Sorghum is among the top five cereals and one of the key crops in global food security efforts. Sorghum is a resilient crop under high-stress environments, ensuring productivity and access to food when other crops fail. Scientists see the potential of sorghum as a main staple food in a future challenged by climate change. The contributors provide a comprehensive review of sorghum knowledge. The discussion covers genetic improvements, development of new hybrids, biotechnology, and physiological modifications. Production topics include water and nutrient management, rotations, and pest control. Final end uses, sorghum as a bioenergy crop, markets, and the future of sorghum are presented. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.

Molecular Dissection of Complex Traits

Molecular Dissection of Complex Traits PDF Author: Andrew H. Paterson
Publisher: CRC Press
ISBN: 9781420049381
Category : Science
Languages : en
Pages : 328

Book Description
In the past 10 years, contemporary geneticists using new molecular tools have been able to resolve complex traits into individual genetic components and describe each such component in detail. Molecular Dissection of Complex Traits summarizes the state of the art in molecular analysis of complex traits (QTL mapping), placing new developments in thi

Sorghum Biochemistry

Sorghum Biochemistry PDF Author: CV Ratnavathi
Publisher: Academic Press
ISBN: 0128031824
Category : Business & Economics
Languages : en
Pages : 359

Book Description
Sorghum Biochemistry: An Industrial Perspective explores the many uses for sorghum in industry and biofuels. Not only does it offer a detailed understanding of the physical and biochemical qualities of the grain, it also takes an in-depth look at the role sorghum plays in such industries as brewing and ethanol production and the mechanics of post-harvest processing and value addition. Sorghum has long been an important staple in Africa and Asia, but its value goes far beyond its uses in human and animal consumption. Sorghum is also used in many industries, including waxes, packing material, wall board, ethanol, beverages, and brewing, and one variety called sweet sorghum has also been used as a bioenergy crop. Sorghum Biochemistry: An Industrial Perspective offers a closer look at how the grain is used in such a variety of ways, and how we can continue to optimize its potential. Provides detailed biochemical studies on grain sorghum to inform researchers grappling with similar issues Offers foundational information on the quality and composition of sorghum as a grain Covers a variety of uses for sorghum in many industries, including food and beverage, energy, and brewing Includes photos and illustrations to enhance the understanding of processes and sorghum biochemistry

Plant Biomass Conversion

Plant Biomass Conversion PDF Author: Elizabeth E. Hood
Publisher: John Wiley & Sons
ISBN: 0470959096
Category : Science
Languages : en
Pages : 376

Book Description
A whole host of motivations are driving the development of the “renewables” industry— ranging from the desire to develop sustainable energy resources to the reduction of dangerous greenhouse gases that contribute to global warming. All energy utilized on the earth is ultimately derived from the sun through photosynthesis—the only truly renewable commodity. As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.

HORIZON OF FIELD CROPS

HORIZON OF FIELD CROPS PDF Author: Ratikanta Maiti
Publisher: American Academic Press
ISBN: 1631818775
Category : Technology & Engineering
Languages : en
Pages : 610

Book Description
The colossal importance of various field crops to satisfy hunger and other requirement of human beings is well known. The roles of cereals and pulses on human nutrition deserves special emphasis for billions of human populations in the world. The present books brief accounts of various aspects of important cereal crops, sugarcane, various legumes, oil seed crops, and fiber yielding crops of the world in different chapters with illustrations. It deals origin and domestication, systematic positions, utilization, botanical description, vegetative and reproductive growth, physiology, mineral nutrition productivity and abiotic stress resistance of most of the crops and also discusses the mechanism of tolerance to drought and salinity. The book also deals with various aspects of fiber crops. In the last two chapters are discussed researches undertaken on salinity tolerance of few crops. Therefore, the book deals in brief the major aspects of most of the field crops in the world. Not a single book is available in the market dealing with so many aspects all together. The book can serve as a text book in economic botany, agriculture and serve the needs of researcher’s working on various crops with research advances obtained on these crops.

Sorghum and Pearl Millet as Climate Resilient Crops for Food and Nutrition Security

Sorghum and Pearl Millet as Climate Resilient Crops for Food and Nutrition Security PDF Author: Mahalingam Govindaraj
Publisher: Frontiers Media SA
ISBN: 2832501435
Category : Science
Languages : en
Pages : 472

Book Description


Manual on MUTATION BREEDING THIRD EDITION

Manual on MUTATION BREEDING THIRD EDITION PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251305269
Category : Technology & Engineering
Languages : en
Pages : 319

Book Description
This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.