Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method PDF full book. Access full book title Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method by Jason Charles Howison. Download full books in PDF and EPUB format.

Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method

Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method PDF Author: Jason Charles Howison
Publisher:
ISBN:
Category : Aeroelasticity
Languages : en
Pages : 165

Book Description
Most current wind turbine aeroelastic codes rely on the blade element momentum method with empirical corrections to compute aerodynamic forces on the wind turbine blades. While efficient, this method relies on experimental data and does not allow designers much flexibility for alternative blade designs. Unsteady solutions to the Navier-Stokes equations offer a significant improvement in aerodynamic modeling, but these are currently too computationally expensive to be useful in a design situation. However, steady-state solutions to the Navier-Stokes equations are possible with reasonable computation times. The harmonic balance method provides a way to represent unsteady, periodic flows through coupled a set of steady-state solutions. This method offers the possibility of unsteady flow solutions at a computational cost on the order of a few steady-state solutions. By coupling a harmonic balance driven aerodynamic model with a mode shape-based structural dynamics model, an efficient aeroelastic model for a wind turbine blade driven by the Navier-Stokes equations is developed in this dissertation. For wind turbine flows, turbulence modeling is essential, especially in the transition of the boundary layer from laminar to turbulent. As part of this dissertation, the Spalart-Allmaras turbulence model and the gamma-Re theta-t transition model are included in the aerodynamic model. This marks the first time that this transition model, turbulence model, and the harmonic balance method have been coupled to study unsteady wind turbine aerodynamics. Results show that the transition model matches experimental data more closely than a fully turbulent model for the onset of both static and dynamic stall. Flutter is of particular interest as turbines continue to increase in size, and longer and softer blades continue to enter the field. In this dissertation, flutter is investigated for the 1.5 MW WindPACT rotor blade. The aeroelastic model created, which incorporates the harmonic balance method and a fully turbulent aerodynamic model, is the first of its kind for wind turbine flutter analysis. Predictions match those of other aeroelastic models for the 1.5 MW WindPACT blade, and the first flap wise and edgewise modes are shown to dominate flutter for the rotor speeds considered.

Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method

Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method PDF Author: Jason Charles Howison
Publisher:
ISBN:
Category : Aeroelasticity
Languages : en
Pages : 165

Book Description
Most current wind turbine aeroelastic codes rely on the blade element momentum method with empirical corrections to compute aerodynamic forces on the wind turbine blades. While efficient, this method relies on experimental data and does not allow designers much flexibility for alternative blade designs. Unsteady solutions to the Navier-Stokes equations offer a significant improvement in aerodynamic modeling, but these are currently too computationally expensive to be useful in a design situation. However, steady-state solutions to the Navier-Stokes equations are possible with reasonable computation times. The harmonic balance method provides a way to represent unsteady, periodic flows through coupled a set of steady-state solutions. This method offers the possibility of unsteady flow solutions at a computational cost on the order of a few steady-state solutions. By coupling a harmonic balance driven aerodynamic model with a mode shape-based structural dynamics model, an efficient aeroelastic model for a wind turbine blade driven by the Navier-Stokes equations is developed in this dissertation. For wind turbine flows, turbulence modeling is essential, especially in the transition of the boundary layer from laminar to turbulent. As part of this dissertation, the Spalart-Allmaras turbulence model and the gamma-Re theta-t transition model are included in the aerodynamic model. This marks the first time that this transition model, turbulence model, and the harmonic balance method have been coupled to study unsteady wind turbine aerodynamics. Results show that the transition model matches experimental data more closely than a fully turbulent model for the onset of both static and dynamic stall. Flutter is of particular interest as turbines continue to increase in size, and longer and softer blades continue to enter the field. In this dissertation, flutter is investigated for the 1.5 MW WindPACT rotor blade. The aeroelastic model created, which incorporates the harmonic balance method and a fully turbulent aerodynamic model, is the first of its kind for wind turbine flutter analysis. Predictions match those of other aeroelastic models for the 1.5 MW WindPACT blade, and the first flap wise and edgewise modes are shown to dominate flutter for the rotor speeds considered.

Aeroelastic Analysis of a Troposkien-type Wind Turbine Blade

Aeroelastic Analysis of a Troposkien-type Wind Turbine Blade PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Book Description


Mechanics and Vibration Modeling of Vertical-axis Wind-turbine Blades and Analysis of Systems with Parametric Excitation

Mechanics and Vibration Modeling of Vertical-axis Wind-turbine Blades and Analysis of Systems with Parametric Excitation PDF Author: Fatemeh Afzali
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 0

Book Description
Wind turbines are one of the fastest-growing energy sources. Based on their axis of rotation they fall into two basic categories: horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs). Darrieus VAWTs exploit aerodynamic lift. This study entails the vibration analysis of large vertical-axis Darrieus wind turbine blades. Very large wind turbines are becoming more abundant due to their ability to harvest greater wind power. VAWTs are less common than HAWTs for large wind applications, but have some favorable characteristics, for example in offshore applications, and so further development of large VAWTs is anticipated. However, VAWTs are known to have vibration issues. VAWT blade vibration is the focus of this work.The straight-bladed H-rotor/Giromill is the simplest type of VAWT. We first derive the equations of motion of a H-rotor blade modeled as a uniform straight elastic Euler-Bernoulli beam under transverse bending and twist deformation. The reduced-order model suggests the existence of periodic damping, periodic stiffness, and direct excitation generated by a cyclic aeroelastic load. The model also indicates spin softening, which could be detrimental as the turbines become large. Periodic damping and stiffness are examples of parametric excitation and are likely to carry over to other types of VAWT blades. Systems with parametric excitation have been studied with various methods. Floquet theory has been classically used to study the stability characteristics of linear systems with periodic coefficients, and has been commonly applied to Mathieu's equation, which represents a vibration system with periodic stiffness. We apply the Floquet theory combined with the harmonic-balance method to a linear vibration system with a periodic damping coefficient. Based on this theory, the approximated solution includes an exponential part, with an unknown exponent, and a periodic part. Our analysis investigates the initial conditions response, the boundaries of instability, and the characteristics of free response solution of the system. The coexistence phenomenon, in which some of the transition curves overlap so that the instability wedges disappear, is recovered in this approach, and is examined closely.An additional case of the parametric excitation is the combination of parametric damping and parametric stiffness. The Floquet-based analysis shows that the combined parametric excitation reshapes the stability characteristics, compared to the system with only parametric damping or stiffness and disrupts the coexistence which is observed in the parametric damping case.The aeroelastic forces encountered by the wind turbines can cause self-excitation in blades, the mechanism of which can be loosely modeled with van-der-Pol-type nonlinearity. We seek to understand the combined effect of parametric excitation and van der Pol nonlinearity, as both can induce instabilities and oscillations. The oscillator is studied under nonresonant conditions and secondary resonances, with and without external excitation. We analyze the system using the method of multiple scales and numerical solutions. For the case without external excitation, the analysis reveals nonresonant phase drift (quasi-periodic responses), and subharmonic resonance with possible phase drift or phase locking (periodic responses). Hard excitation is treated for nonresonant conditions and secondary resonances, and similar phenomena are uncovered.Some Darrieus VAWTs consist of curved blades. We lastly study the modal analysis of curved Darrieus wind-turbine blades and obtain the mode shapes and modal frequencies. The governing equations are derived using the fundamental deformation mechanics, and thin beam approximations are employed to express the strain and kinetic energies. The assumed-modes method is applied to the energies, and the Euler-Lagrange equation is used to discretize the equations of motion. Implementing these equations, mode shapes are calculated and mapped back onto the curved beam for visualization. This analysis is conducted for pinned-pinned and hinged-hinged blades. The results are compared with Finite element analysis using Abaqus and with the literature.

Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials PDF Author: J. G.Holierhoek
Publisher: Elsevier Inc. Chapters
ISBN: 0128089164
Category : Technology & Engineering
Languages : en
Pages : 30

Book Description
Aeroelasticity concerns the interaction between aerodynamics, dynamics and elasticity. This interaction can result in negatively or badly damped wind turbine blade modes, which can have a significant effect on the turbine lifetime. The first aeroelastic problem that occurred on commercial wind turbines concerned a negatively damped edgewise mode. It is important to ensure that there is some out-of-plane deformation in this mode shape to prevent the instability. For larger turbine blades with lower torsional stiffness and the possibility of higher tip speeds for the offshore designs, classical flutter could also become relevant. When designing a wind turbine blade, it is therefore crucial that there is enough damping for the different modes and that there is no coincidence of natural frequencies with excitation frequencies (resonance). An effective aeroelastic analysis is also important, and the tools used for such an analysis must include the necessary detail in the structural model.

Aeroelastic Analysis of a Darrieus Type Wind Turbine Blade with Troposkien Geometry

Aeroelastic Analysis of a Darrieus Type Wind Turbine Blade with Troposkien Geometry PDF Author: Fred Nitzsche
Publisher:
ISBN:
Category : Aeroelasticity
Languages : en
Pages : 294

Book Description


Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials PDF Author: D.J. Lekou
Publisher: Elsevier Inc. Chapters
ISBN: 0128089210
Category : Technology & Engineering
Languages : en
Pages : 41

Book Description
The chapter discusses the topic of probabilistic analysis of wind turbine blades. First, structural analysis models, the definition of ‘failure’ and the treatment of random variables will be explored, focusing on the challenges involved in a probabilistic design depending on the choices made during each step. Next, the various probabilistic methods (Monte Carlo method, first-order reliability method, Edgeworth expansion method, response surface method) will be described. Issues arising out of the use of composite material structures, in applications such as wind turbine blades, as well as other aspects relating to wind energy applications will be highlighted, and techniques will be discussed through examples.

Nonlinear Equations of Equilibrium for Elastic Helicopter Or Wind Turbine Blades Undergoing Moderate Deformation

Nonlinear Equations of Equilibrium for Elastic Helicopter Or Wind Turbine Blades Undergoing Moderate Deformation PDF Author: Aviv Rosen
Publisher:
ISBN:
Category : Aeroelasticity
Languages : en
Pages : 120

Book Description


Dynamics of Horizontal Axis Wind Turbines and Systems with Parametric Stiffness

Dynamics of Horizontal Axis Wind Turbines and Systems with Parametric Stiffness PDF Author: Gizem Dilber Acar
Publisher:
ISBN: 9781369530056
Category : Electronic dissertations
Languages : en
Pages : 122

Book Description


Ground-Based Radar in Structural Design, Optimization, and Health Monitoring of Stationary and Rotating Structures

Ground-Based Radar in Structural Design, Optimization, and Health Monitoring of Stationary and Rotating Structures PDF Author: Francis Xavier Ochieng
Publisher: Springer Nature
ISBN: 3031290089
Category : Science
Languages : en
Pages : 227

Book Description
​This book provides a practical application for using ground-based radar (GBR) as a remote (non-contact) sensor for structural health monitoring (SHM) in the development of sustainable and robust stationary and rotating structures, such as beam-like bridges, towers, wind turbines, and hydropower turbines. It integrates cutting-edge research into an easy-to-understand approach for non-radar and monitoring specialists, building on the methods and theory of working with radar systems, SHM frameworks, GBR signal processing, and validation techniques. All aspects of in-field monitoring and use during the design and testing of structures are covered, including data acquisition and processing, damage detection techniques, and damage prognostic techniques. The book is a hands-on reference that provides critical information on GBR for practitioners, university instructors, and students involved in structural design, optimization, and health monitoring of stationary and rotating structures.

Wind Energy 1975–1985

Wind Energy 1975–1985 PDF Author: Penny Farmer
Publisher: Springer Science & Business Media
ISBN: 3642826601
Category : Technology & Engineering
Languages : en
Pages : 172

Book Description