Advances in the Discrete Differential Geometry of Surfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in the Discrete Differential Geometry of Surfaces PDF full book. Access full book title Advances in the Discrete Differential Geometry of Surfaces by . Download full books in PDF and EPUB format.

Advances in the Discrete Differential Geometry of Surfaces

Advances in the Discrete Differential Geometry of Surfaces PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Advances in the Discrete Differential Geometry of Surfaces

Advances in the Discrete Differential Geometry of Surfaces PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Advances in Discrete Differential Geometry

Advances in Discrete Differential Geometry PDF Author: Alexander I. Bobenko
Publisher: Springer
ISBN: 3662504472
Category : Mathematics
Languages : en
Pages : 441

Book Description
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, and on pure mathematics and its practical applications. The interaction of these facets is demonstrated by concrete examples, including discrete conformal mappings, discrete complex analysis, discrete curvatures and special surfaces, discrete integrable systems, conformal texture mappings in computer graphics, and free-form architecture. This richly illustrated book will convince readers that this new branch of mathematics is both beautiful and useful. It will appeal to graduate students and researchers in differential geometry, complex analysis, mathematical physics, numerical methods, discrete geometry, as well as computer graphics and geometry processing.

Discrete Differential Geometry

Discrete Differential Geometry PDF Author: Alexander I. Bobenko
Publisher: American Mathematical Society
ISBN: 1470474565
Category : Mathematics
Languages : en
Pages : 432

Book Description
An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.

Discrete Differential Geometry

Discrete Differential Geometry PDF Author: Alexander I. Bobenko TU Berlin
Publisher: Springer Science & Business Media
ISBN: 3764386215
Category : Mathematics
Languages : en
Pages : 341

Book Description
This is the first book on a newly emerging field of discrete differential geometry providing an excellent way to access this exciting area. It provides discrete equivalents of the geometric notions and methods of differential geometry, such as notions of curvature and integrability for polyhedral surfaces. The carefully edited collection of essays gives a lively, multi-facetted introduction to this emerging field.

On the Discrete Differential Geometry of Surfaces in S4

On the Discrete Differential Geometry of Surfaces in S4 PDF Author: George Shapiro
Publisher:
ISBN:
Category : Differential topology
Languages : en
Pages : 97

Book Description


An Excursion Through Discrete Differential Geometry

An Excursion Through Discrete Differential Geometry PDF Author: American Mathematical Society. Short Course, Discrete Differential Geometry
Publisher: American Mathematical Soc.
ISBN: 1470446626
Category : Education
Languages : en
Pages : 140

Book Description
Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical approximation, the central philosophy of DDG is to faithfully and exactly preserve key invariants of geometric objects at the discrete level. This process of translation from smooth to discrete helps to both illuminate the fundamental meaning behind geometric ideas and provide useful algorithmic guarantees. This volume is based on lectures delivered at the 2018 AMS Short Course ``Discrete Differential Geometry,'' held January 8-9, 2018, in San Diego, California. The papers in this volume illustrate the principles of DDG via several recent topics: discrete nets, discrete differential operators, discrete mappings, discrete conformal geometry, and discrete optimal transport.

Classical and Discrete Differential Geometry

Classical and Discrete Differential Geometry PDF Author: David Xianfeng Gu
Publisher: CRC Press
ISBN: 1000804461
Category : Computers
Languages : en
Pages : 690

Book Description
This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks. With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation. The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.

Digital and Discrete Geometry

Digital and Discrete Geometry PDF Author: Li M. Chen
Publisher: Springer
ISBN: 3319120999
Category : Computers
Languages : en
Pages : 325

Book Description
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.

Painleve Equations in the Differential Geometry of Surfaces

Painleve Equations in the Differential Geometry of Surfaces PDF Author: Alexander I. Bobenko TU Berlin
Publisher: Springer
ISBN: 3540444521
Category : Mathematics
Languages : en
Pages : 125

Book Description
This book brings together two different branches of mathematics: the theory of Painlev and the theory of surfaces. Self-contained introductions to both these fields are presented. It is shown how some classical problems in surface theory can be solved using the modern theory of Painlev equations. In particular, an essential part of the book is devoted to Bonnet surfaces, i.e. to surfaces possessing families of isometries preserving the mean curvature function. A global classification of Bonnet surfaces is given using both ingredients of the theory of Painlev equations: the theory of isomonodromic deformation and the Painlev property. The book is illustrated by plots of surfaces. It is intended to be used by mathematicians and graduate students interested in differential geometry and Painlev equations. Researchers working in one of these areas can become familiar with another relevant branch of mathematics.

Variational Principles for Discrete Surfaces

Variational Principles for Discrete Surfaces PDF Author: Junfei Dai
Publisher: International Press of Boston
ISBN:
Category : Computers
Languages : en
Pages : 160

Book Description
"This new volume introduces readers to some of the current topics of research in the geometry of polyhedral surfaces, with applications to computer graphics. The main feature of the volume is a systematic introduction to the geometry of polyhedral surfaces based on the variational principle. The authors focus on using analytic methods in the study of some of the fundamental results and problems of polyhedral geometry: for instance, the Cauchy rigidity theorem, Thurston's circle packing theorem, rigidity of circle packing theorems, and Colin de Verdiere's variational principle. The present book is the first complete treatment of the vast, and expansively developed, field of polyhedral geometry."--Back cover.