Advances in Minimum Description Length PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in Minimum Description Length PDF full book. Access full book title Advances in Minimum Description Length by Peter D. Grünwald. Download full books in PDF and EPUB format.

Advances in Minimum Description Length

Advances in Minimum Description Length PDF Author: Peter D. Grünwald
Publisher: MIT Press
ISBN: 9780262072625
Category : Computers
Languages : en
Pages : 464

Book Description
A source book for state-of-the-art MDL, including an extensive tutorial and recent theoretical advances and practical applications in fields ranging from bioinformatics to psychology.

Advances in Minimum Description Length

Advances in Minimum Description Length PDF Author: Peter D. Grünwald
Publisher: MIT Press
ISBN: 9780262072625
Category : Computers
Languages : en
Pages : 464

Book Description
A source book for state-of-the-art MDL, including an extensive tutorial and recent theoretical advances and practical applications in fields ranging from bioinformatics to psychology.

The Minimum Description Length Principle

The Minimum Description Length Principle PDF Author: Peter D. Grünwald
Publisher: MIT Press
ISBN: 0262072815
Category : Minimum description length (Information theory).
Languages : en
Pages : 736

Book Description
This introduction to the MDL Principle provides a reference accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection.

Advances in Intelligent Data Analysis XVIII

Advances in Intelligent Data Analysis XVIII PDF Author: Michael R. Berthold
Publisher: Springer
ISBN: 9783030445836
Category : Computers
Languages : en
Pages : 588

Book Description
This open access book constitutes the proceedings of the 18th International Conference on Intelligent Data Analysis, IDA 2020, held in Konstanz, Germany, in April 2020. The 45 full papers presented in this volume were carefully reviewed and selected from 114 submissions. Advancing Intelligent Data Analysis requires novel, potentially game-changing ideas. IDA’s mission is to promote ideas over performance: a solid motivation can be as convincing as exhaustive empirical evaluation.

An Introduction to Kolmogorov Complexity and Its Applications

An Introduction to Kolmogorov Complexity and Its Applications PDF Author: Ming Li
Publisher: Springer Science & Business Media
ISBN: 1475726066
Category : Mathematics
Languages : en
Pages : 655

Book Description
Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Advances in Network Clustering and Blockmodeling

Advances in Network Clustering and Blockmodeling PDF Author: Patrick Doreian
Publisher: John Wiley & Sons
ISBN: 1119224705
Category : Mathematics
Languages : en
Pages : 425

Book Description
Provides an overview of the developments and advances in the field of network clustering and blockmodeling over the last 10 years This book offers an integrated treatment of network clustering and blockmodeling, covering all of the newest approaches and methods that have been developed over the last decade. Presented in a comprehensive manner, it offers the foundations for understanding network structures and processes, and features a wide variety of new techniques addressing issues that occur during the partitioning of networks across multiple disciplines such as community detection, blockmodeling of valued networks, role assignment, and stochastic blockmodeling. Written by a team of international experts in the field, Advances in Network Clustering and Blockmodeling offers a plethora of diverse perspectives covering topics such as: bibliometric analyses of the network clustering literature; clustering approaches to networks; label propagation for clustering; and treating missing network data before partitioning. It also examines the partitioning of signed networks, multimode networks, and linked networks. A chapter on structured networks and coarsegrained descriptions is presented, along with another on scientific coauthorship networks. The book finishes with a section covering conclusions and directions for future work. In addition, the editors provide numerous tables, figures, case studies, examples, datasets, and more. Offers a clear and insightful look at the state of the art in network clustering and blockmodeling Provides an excellent mix of mathematical rigor and practical application in a comprehensive manner Presents a suite of new methods, procedures, algorithms for partitioning networks, as well as new techniques for visualizing matrix arrays Features numerous examples throughout, enabling readers to gain a better understanding of research methods and to conduct their own research effectively Written by leading contributors in the field of spatial networks analysis Advances in Network Clustering and Blockmodeling is an ideal book for graduate and undergraduate students taking courses on network analysis or working with networks using real data. It will also benefit researchers and practitioners interested in network analysis.

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Stochastic Complexity In Statistical Inquiry

Stochastic Complexity In Statistical Inquiry PDF Author: Jorma Rissanen
Publisher: World Scientific
ISBN: 9814507407
Category : Technology & Engineering
Languages : en
Pages : 191

Book Description
This book describes how model selection and statistical inference can be founded on the shortest code length for the observed data, called the stochastic complexity. This generalization of the algorithmic complexity not only offers an objective view of statistics, where no prejudiced assumptions of 'true' data generating distributions are needed, but it also in one stroke leads to calculable expressions in a range of situations of practical interest and links very closely with mainstream statistical theory. The search for the smallest stochastic complexity extends the classical maximum likelihood technique to a new global one, in which models can be compared regardless of their numbers of parameters. The result is a natural and far reaching extension of the traditional theory of estimation, where the Fisher information is replaced by the stochastic complexity and the Cramer-Rao inequality by an extension of the Shannon-Kullback inequality. Ideas are illustrated with applications from parametric and non-parametric regression, density and spectrum estimation, time series, hypothesis testing, contingency tables, and data compression.

Clusters, Orders, and Trees: Methods and Applications

Clusters, Orders, and Trees: Methods and Applications PDF Author: Fuad Aleskerov
Publisher: Springer
ISBN: 1493907425
Category : Mathematics
Languages : en
Pages : 404

Book Description
The volume is dedicated to Boris Mirkin on the occasion of his 70th birthday. In addition to his startling PhD results in abstract automata theory, Mirkin’s ground breaking contributions in various fields of decision making and data analysis have marked the fourth quarter of the 20th century and beyond. Mirkin has done pioneering work in group choice, clustering, data mining and knowledge discovery aimed at finding and describing non-trivial or hidden structures—first of all, clusters, orderings and hierarchies—in multivariate and/or network data. This volume contains a collection of papers reflecting recent developments rooted in Mirkin’s fundamental contribution to the state-of-the-art in group choice, ordering, clustering, data mining and knowledge discovery. Researchers, students and software engineers will benefit from new knowledge discovery techniques and application directions.

Advances in Natural Computation

Advances in Natural Computation PDF Author: Licheng Jiao
Publisher: Springer
ISBN: 3540459022
Category : Computers
Languages : en
Pages : 1030

Book Description
This is volume I of the proceedings of the Second International Conference on Natural Computation, ICNC 2006. After a demanding review process 168 carefully revised full papers and 86 revised short papers were selected from 1915 submissions for presentation in two volumes. This first volume includes 130 papers related to artificial neural networks, natural neural systems and cognitive science, neural network applications, as well as evolutionary computation: theory and algorithms.