Classification, Clustering, and Data Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Classification, Clustering, and Data Analysis PDF full book. Access full book title Classification, Clustering, and Data Analysis by Krzystof Jajuga. Download full books in PDF and EPUB format.

Classification, Clustering, and Data Analysis

Classification, Clustering, and Data Analysis PDF Author: Krzystof Jajuga
Publisher: Springer Science & Business Media
ISBN: 3642561810
Category : Computers
Languages : en
Pages : 468

Book Description
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.

Classification, Clustering, and Data Analysis

Classification, Clustering, and Data Analysis PDF Author: Krzystof Jajuga
Publisher: Springer Science & Business Media
ISBN: 3642561810
Category : Computers
Languages : en
Pages : 468

Book Description
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.

Advanced Classification Techniques for Healthcare Analysis

Advanced Classification Techniques for Healthcare Analysis PDF Author: Chakraborty, Chinmay
Publisher: IGI Global
ISBN: 1522577971
Category : Medical
Languages : en
Pages : 448

Book Description
Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.

Advanced Studies in Classification and Data Science

Advanced Studies in Classification and Data Science PDF Author: Tadashi Imaizumi
Publisher: Springer Nature
ISBN: 9811533113
Category : Mathematics
Languages : en
Pages : 506

Book Description
This edited volume focuses on the latest developments in classification and data science and covers a wide range of topics in the context of data analysis and related areas, e.g. the analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, data visualization, multivariate statistical methods, and various applications to real data in the social sciences, medical sciences, and other disciplines. In addition to sharing theoretical and methodological findings, the book shows how to apply the proposed methods to a variety of problems — e.g. in consumer behavior, decision-making, marketing data and social network structures. Both methodological aspects and applications to a wide range of areas such as economics, behavioral science, marketing science, management science and the social sciences are covered. The book is chiefly intended for researchers and practitioners who are interested in the latest developments and practical applications in these fields, as well as applied statisticians and data analysts. Its combination of methodological advances with a wide range of real-world applications gathered from several fields makes it of unique value in helping readers solve their research problems.

Classification, (big) Data Analysis and Statistical Learning

Classification, (big) Data Analysis and Statistical Learning PDF Author: Francesco Mola
Publisher:
ISBN: 9783319557090
Category : Mathematical statistics
Languages : en
Pages : 242

Book Description
This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8-10, 2015.

Classification, Data Analysis, and Knowledge Organization

Classification, Data Analysis, and Knowledge Organization PDF Author: Hans-Hermann Bock
Publisher: Springer Science & Business Media
ISBN: 3642763073
Category : Business & Economics
Languages : en
Pages : 404

Book Description
In science, industry, public administration and documentation centers large amounts of data and information are collected which must be analyzed, ordered, visualized, classified and stored efficiently in order to be useful for practical applications. This volume contains 50 selected theoretical and applied papers presenting a wealth of new and innovative ideas, methods, models and systems which can be used for this purpose. It combines papers and strategies from two main streams of research in an interdisciplinary, dynamic and exciting way: On the one hand, mathematical and statistical methods are described which allow a quantitative analysis of data, provide strategies for classifying objects or making exploratory searches for interesting structures, and give ways to make comprehensive graphical displays of large arrays of data. On the other hand, papers related to information sciences, informatics and data bank systems provide powerful tools for representing, modelling, storing and retrieving facts, data and knowledge characterized by qualitative descriptors, semantic relations, or linguistic concepts. The integration of both fields and a special part on applied problems from biology, medicine, archeology, industry and administration assure that this volume will be informative and useful for theory and practice.

Data Analysis, Classification, and Related Methods

Data Analysis, Classification, and Related Methods PDF Author: Henk A.L. Kiers
Publisher: Springer Science & Business Media
ISBN: 3642597890
Category : Mathematics
Languages : en
Pages : 428

Book Description
This volume contains a selection of papers presented at the Seven~h Confer ence of the International Federation of Classification Societies (IFCS-2000), which was held in Namur, Belgium, July 11-14,2000. From the originally sub mitted papers, a careful review process involving two reviewers per paper, led to the selection of 65 papers that were considered suitable for publication in this book. The present book contains original research contributions, innovative ap plications and overview papers in various fields within data analysis, classifi cation, and related methods. Given the fast publication process, the research results are still up-to-date and coincide with their actual presentation at the IFCS-2000 conference. The topics captured are: • Cluster analysis • Comparison of clusterings • Fuzzy clustering • Discriminant analysis • Mixture models • Analysis of relationships data • Symbolic data analysis • Regression trees • Data mining and neural networks • Pattern recognition • Multivariate data analysis • Robust data analysis • Data science and sampling The IFCS (International Federation of Classification Societies) The IFCS promotes the dissemination of technical and scientific information data analysis, classification, related methods, and their applica concerning tions.

Advanced Data Analytics Using Python

Advanced Data Analytics Using Python PDF Author: Sayan Mukhopadhyay
Publisher: Apress
ISBN: 1484234502
Category : Computers
Languages : en
Pages : 195

Book Description
Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.

Data Analysis, Machine Learning and Applications

Data Analysis, Machine Learning and Applications PDF Author: Christine Preisach
Publisher: Springer Science & Business Media
ISBN: 354078246X
Category : Computers
Languages : en
Pages : 714

Book Description
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.

Data Analysis and Classification

Data Analysis and Classification PDF Author: Krzysztof Jajuga
Publisher: Springer Nature
ISBN: 3030751902
Category : Business & Economics
Languages : en
Pages : 352

Book Description
This volume gathers peer-reviewed contributions that address a wide range of recent developments in the methodology and applications of data analysis and classification tools in micro and macroeconomic problems. The papers were originally presented at the 29th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2020, held in Sopot, Poland, September 7–9, 2020. Providing a balance between methodological contributions and empirical papers, the book is divided into five parts focusing on methodology, finance, economics, social issues and applications dealing with COVID-19 data. It is aimed at a wide audience, including researchers at universities and research institutions, graduate and doctoral students, practitioners, data scientists and employees in public statistical institutions.

Advances in Data Analysis

Advances in Data Analysis PDF Author: Reinhold Decker
Publisher: Springer Science & Business Media
ISBN: 3540709819
Category : Computers
Languages : en
Pages : 689

Book Description
This book focuses on exploratory data analysis, learning of latent structures in datasets, and unscrambling of knowledge. Coverage details a broad range of methods from multivariate statistics, clustering and classification, visualization and scaling as well as from data and time series analysis. It provides new approaches for information retrieval and data mining and reports a host of challenging applications in various fields.