Advances in Automatic Differentiation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in Automatic Differentiation PDF full book. Access full book title Advances in Automatic Differentiation by Christian H. Bischof. Download full books in PDF and EPUB format.

Advances in Automatic Differentiation

Advances in Automatic Differentiation PDF Author: Christian H. Bischof
Publisher: Springer Science & Business Media
ISBN: 3540689427
Category : Computers
Languages : en
Pages : 366

Book Description
The Fifth International Conference on Automatic Differentiation held from August 11 to 15, 2008 in Bonn, Germany, is the most recent one in a series that began in Breckenridge, USA, in 1991 and continued in Santa Fe, USA, in 1996, Nice, France, in 2000 and Chicago, USA, in 2004. The 31 papers included in these proceedings re?ect the state of the art in automatic differentiation (AD) with respect to theory, applications, and tool development. Overall, 53 authors from institutions in 9 countries contributed, demonstrating the worldwide acceptance of AD technology in computational science. Recently it was shown that the problem underlying AD is indeed NP-hard, f- mally proving the inherently challenging nature of this technology. So, most likely, no deterministic “silver bullet” polynomial algorithm can be devised that delivers optimum performance for general codes. In this context, the exploitation of doma- speci?c structural information is a driving issue in advancing practical AD tool and algorithm development. This trend is prominently re?ected in many of the pub- cations in this volume, not only in a better understanding of the interplay of AD and certain mathematical paradigms, but in particular in the use of hierarchical AD approaches that judiciously employ general AD techniques in application-speci?c - gorithmic harnesses. In this context, the understanding of structures such as sparsity of derivatives, or generalizations of this concept like scarcity, plays a critical role, in particular for higher derivative computations.

Advances in Automatic Differentiation

Advances in Automatic Differentiation PDF Author: Christian H. Bischof
Publisher: Springer Science & Business Media
ISBN: 3540689427
Category : Computers
Languages : en
Pages : 366

Book Description
The Fifth International Conference on Automatic Differentiation held from August 11 to 15, 2008 in Bonn, Germany, is the most recent one in a series that began in Breckenridge, USA, in 1991 and continued in Santa Fe, USA, in 1996, Nice, France, in 2000 and Chicago, USA, in 2004. The 31 papers included in these proceedings re?ect the state of the art in automatic differentiation (AD) with respect to theory, applications, and tool development. Overall, 53 authors from institutions in 9 countries contributed, demonstrating the worldwide acceptance of AD technology in computational science. Recently it was shown that the problem underlying AD is indeed NP-hard, f- mally proving the inherently challenging nature of this technology. So, most likely, no deterministic “silver bullet” polynomial algorithm can be devised that delivers optimum performance for general codes. In this context, the exploitation of doma- speci?c structural information is a driving issue in advancing practical AD tool and algorithm development. This trend is prominently re?ected in many of the pub- cations in this volume, not only in a better understanding of the interplay of AD and certain mathematical paradigms, but in particular in the use of hierarchical AD approaches that judiciously employ general AD techniques in application-speci?c - gorithmic harnesses. In this context, the understanding of structures such as sparsity of derivatives, or generalizations of this concept like scarcity, plays a critical role, in particular for higher derivative computations.

Automatic Differentiation of Algorithms

Automatic Differentiation of Algorithms PDF Author: George Corliss
Publisher: Springer Science & Business Media
ISBN: 1461300754
Category : Computers
Languages : en
Pages : 431

Book Description
A survey book focusing on the key relationships and synergies between automatic differentiation (AD) tools and other software tools, such as compilers and parallelizers, as well as their applications. The key objective is to survey the field and present the recent developments. In doing so the topics covered shed light on a variety of perspectives. They reflect the mathematical aspects, such as the differentiation of iterative processes, and the analysis of nonsmooth code. They cover the scientific programming aspects, such as the use of adjoints in optimization and the propagation of rounding errors. They also cover "implementation" problems.

Evaluating Derivatives

Evaluating Derivatives PDF Author: Andreas Griewank
Publisher: SIAM
ISBN: 0898716594
Category : Mathematics
Languages : en
Pages : 448

Book Description
This title is a comprehensive treatment of algorithmic, or automatic, differentiation. The second edition covers recent developments in applications and theory, including an elegant NP completeness argument and an introduction to scarcity.

The Art of Differentiating Computer Programs

The Art of Differentiating Computer Programs PDF Author: Uwe Naumann
Publisher: SIAM
ISBN: 9781611972078
Category : Mathematics
Languages : en
Pages : 358

Book Description
This is the first entry-level book on algorithmic (also known as automatic) differentiation (AD), providing fundamental rules for the generation of first- and higher-order tangent-linear and adjoint code. The author covers the mathematical underpinnings as well as how to apply these observations to real-world numerical simulation programs. Readers will find: examples and exercises, including hints to solutions; the prototype AD tools dco and dcc for use with the examples and exercises; first- and higher-order tangent-linear and adjoint modes for a limited subset of C/C++, provided by the derivative code compiler dcc; a supplementary website containing sources of all software discussed in the book, additional exercises and comments on their solutions (growing over the coming years), links to other sites on AD, and errata.

Recent Advances in Algorithmic Differentiation

Recent Advances in Algorithmic Differentiation PDF Author: Shaun Forth
Publisher: Springer Science & Business Media
ISBN: 3642300235
Category : Mathematics
Languages : en
Pages : 356

Book Description
The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.

Modern Computational Finance

Modern Computational Finance PDF Author: Antoine Savine
Publisher: John Wiley & Sons
ISBN: 1119539455
Category : Mathematics
Languages : en
Pages : 592

Book Description
Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.

Automatic Differentiation: Applications, Theory, and Implementations

Automatic Differentiation: Applications, Theory, and Implementations PDF Author: H. Martin Bücker
Publisher: Springer Science & Business Media
ISBN: 3540284389
Category : Computers
Languages : en
Pages : 370

Book Description
Covers the state of the art in automatic differentiation theory and practice. Intended for computational scientists and engineers, this book aims to provide insight into effective strategies for using automatic differentiation for design optimization, sensitivity analysis, and uncertainty quantification.

Mathematical Programming

Mathematical Programming PDF Author: Masao Iri
Publisher: Springer
ISBN:
Category : Business & Economics
Languages : en
Pages : 396

Book Description


Advances in Geo-Spatial Information Science

Advances in Geo-Spatial Information Science PDF Author: Wenzhong Shi
Publisher: CRC Press
ISBN: 0415620937
Category : Technology & Engineering
Languages : en
Pages : 338

Book Description
Advances in Geo-Spatial Information Science presents recent advances regarding fundamental issues of geo-spatial information science (space and time, spatial analysis, uncertainty modeling and geo-visualization), and new scientific and technological research initiatives for geo-spatial information science (such as spatial data mining, mobile data modeling, and location-based services). The book contains selected and revised papers presented at the joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science (Hong Kong, 26–28 May 2010), and brings together three related international academic communities: spatial information science, spatial data handling, and modeling geographic systems. Advances in Geo-Spatial Information Science will be of interest for academics and professionals interested in spatial information science, spatial data handling, and modeling of geographic systems.

Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition) PDF Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595

Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.