Advanced Topologies of High-voltage-gain DC-DC Boost Converters for Renewable Energy Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advanced Topologies of High-voltage-gain DC-DC Boost Converters for Renewable Energy Applications PDF full book. Access full book title Advanced Topologies of High-voltage-gain DC-DC Boost Converters for Renewable Energy Applications by Ahmad Saeed Y. Alzahrani. Download full books in PDF and EPUB format.

Advanced Topologies of High-voltage-gain DC-DC Boost Converters for Renewable Energy Applications

Advanced Topologies of High-voltage-gain DC-DC Boost Converters for Renewable Energy Applications PDF Author: Ahmad Saeed Y. Alzahrani
Publisher:
ISBN:
Category :
Languages : en
Pages : 157

Book Description
This dissertation proposes several advanced power electronic converters that are suitable for integrating low-voltage dc input sources, such as photovoltaic (PV) solar panels, to a high voltage dc bus in a 200 - 960 V dc distribution system. The proposed converters operate in the continuous conduction mode (CCM) and offer desirable features such as low-voltage stresses on components, continuous input currents, and the ability to integrate several independent dc input sources. First, a family of scalable interleaved boost converters with voltage multiplier cells (VMC) is introduced. Several possible combinations of Dickson and Cockcroft-Walton VMCs are demonstrated and compared in terms of the voltage gain, number of components, and input current sharing. This dissertation also presents a novel VMC structure called Bi-fold Dickson. The novel VMC offers equal current sharing between phases regardless of the number of stages, voltage ripple cancellation at each stage, and does not require an output diode. A family of high-voltage-gain multilevel boost converters is presented, with detailed example of the hybrid flyback and three-level boost converter. In this family, the effective frequency seen by the magnetic element is multiple times the switching frequency, and therefore smaller magnetic devices can be used. Theory of operations, steady-state analysis, component selections, simulation, and efficiency analysis are included for each proposed converter. The operation of the proposed converters was further verified with 80 - 200 W hardware prototypes"--Abstract, page iv.

Advanced Topologies of High-voltage-gain DC-DC Boost Converters for Renewable Energy Applications

Advanced Topologies of High-voltage-gain DC-DC Boost Converters for Renewable Energy Applications PDF Author: Ahmad Saeed Y. Alzahrani
Publisher:
ISBN:
Category :
Languages : en
Pages : 157

Book Description
This dissertation proposes several advanced power electronic converters that are suitable for integrating low-voltage dc input sources, such as photovoltaic (PV) solar panels, to a high voltage dc bus in a 200 - 960 V dc distribution system. The proposed converters operate in the continuous conduction mode (CCM) and offer desirable features such as low-voltage stresses on components, continuous input currents, and the ability to integrate several independent dc input sources. First, a family of scalable interleaved boost converters with voltage multiplier cells (VMC) is introduced. Several possible combinations of Dickson and Cockcroft-Walton VMCs are demonstrated and compared in terms of the voltage gain, number of components, and input current sharing. This dissertation also presents a novel VMC structure called Bi-fold Dickson. The novel VMC offers equal current sharing between phases regardless of the number of stages, voltage ripple cancellation at each stage, and does not require an output diode. A family of high-voltage-gain multilevel boost converters is presented, with detailed example of the hybrid flyback and three-level boost converter. In this family, the effective frequency seen by the magnetic element is multiple times the switching frequency, and therefore smaller magnetic devices can be used. Theory of operations, steady-state analysis, component selections, simulation, and efficiency analysis are included for each proposed converter. The operation of the proposed converters was further verified with 80 - 200 W hardware prototypes"--Abstract, page iv.

Advanced Topologies of High Step-up DC-DC Converters for Renewable Energy Applications

Advanced Topologies of High Step-up DC-DC Converters for Renewable Energy Applications PDF Author: Ramin Rahimi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
"This research is focused on developing several advanced topologies of high step-up DC-DC converters to connect low-voltage renewable energy (RE) sources, such as photovoltaic (PV) panels and fuel cells (FCs), into a high-voltage DC bus in renewable energy applications. The proposed converters are based on the combinations of various voltage-boosting (VB) techniques, including interleaved and quadratic structures, switched-capacitor (SC)-based voltage multiplier (VM) cells, and magnetically coupled inductor (CI) and built-in-transformer (BIT). The proposed converters offer outstanding features, including high voltage gain with low or medium duty cycle, a small number of components, low current and voltage stresses on the components, continuous input current with low ripple, and high efficiency. This research includes five new advanced high step-up DC-DC converters with detailed analyses. First, an interleaved converter is presented, which is based on the integration of two three-winding CIs with SC-based VM cells. Second, a dual-switch converter is proposed, which is based on the integration of a single three-winding CI with SC-based VM cells. Third, the SC-based VM cells are utilized to present three new Z-source (ZS)-based converters. Fourth, two double-winding CIs and a three-winding BIT are combined with SC-based VM cells to develop another interleaved high step-up converter. Finally, two double-winding CIs and SC-based VM cells are adopted to devise an interleaved quadratic converter with high voltage gain. The operating and steady-state analyses, design considerations, and a comparison with similar converters in the literature are provided for each converter. In addition, hardware prototypes were fabricated to verify the performance of the proposed converters"--Abstract, page iv.

High Efficiency Non-isolated DC-DC Converters with Wide Voltage Gain Range for Renewable Energies

High Efficiency Non-isolated DC-DC Converters with Wide Voltage Gain Range for Renewable Energies PDF Author: Yun Zhang
Publisher: Springer Nature
ISBN: 9819706483
Category :
Languages : en
Pages : 289

Book Description


DC—DC Converters for Future Renewable Energy Systems

DC—DC Converters for Future Renewable Energy Systems PDF Author: Neeraj Priyadarshi
Publisher: Springer Nature
ISBN: 9811643881
Category : Technology & Engineering
Languages : en
Pages : 480

Book Description
The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.

Non-Isolated DC-DC Converters for Renewable Energy Applications

Non-Isolated DC-DC Converters for Renewable Energy Applications PDF Author: Frede Blaabjerg
Publisher: CRC Press
ISBN: 1000378861
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
Photovoltaic (PV) energy generation is an excellent example of large-scale electric power generation through various parallel arrangements of small voltage-generating solar cells or modules. However, PV generation systems require power electronic converters system to satisfy the need for real-time applications or to balance the demand for power from electric. Therefore, a DC-DC power converter is a vital constituent in the intermediate conversion stage of PV power. This book presents a comprehensive review of various non-isolated DC-DC power converters. Non-isolated DC-DC converters for renewable energy system (RES) application presented in this book 1st edition through a detailed original investigation, obtained numerical/experimental results, and guided the scope to design new families of converters: DC-DC multistage power converter topologies, Multistage "X-Y converter family", Nx IMBC (Nx Interleaved Multilevel Boost Converter), Cockcroft Walton (CW) Voltage Multiplier-Based Multistage/Multilevel Power Converter (CW-VM-MPC) converter topologies, and Z-source and quasi Z-source. Above solutions are discussed to show how they can achieve the maximum voltage conversion gain ratio by adapting the passive/active component within the circuits. For assessment, we have recommended novel power converters through their functionality and designs, tested and verified by numerical software. Further, the hardware prototype implementation is carried out through a flexible digital processor. Both numerical and experimental results always shown as expected close agreement with primary theoretical hypotheses. This book offers guidelines and recommendation for future development with the DC-DC converters for RES applications based on cost-effective, and reliable solutions.

DC-DC Converter Topologies

DC-DC Converter Topologies PDF Author: Gerry Moschopoulos
Publisher: John Wiley & Sons
ISBN: 111961242X
Category : Technology & Engineering
Languages : en
Pages : 468

Book Description
A comprehensive look at DC-DC converters and advanced power converter topologies for all skills levels As it can be rare for source voltage to meet the requirements of a Direct Current (DC) load, DC-DC converters are essential to access service. DC-DC power converters employ power semiconductor devices (like MOSFETs and IGBTs) as switches and passive elements such as capacitors, inductors, and transformers to alter the voltage provided by a DC source into the necessary DC voltage as is required by a DC load. This source can be a battery, solar panels, fuel cells, or a DC bus voltage fed by rectified AC utility voltage. As the many components of DC-DC converters can be differently arranged into circuit structures called topologies, there are as many possible circuit topologies as there are possible combinations of circuit elements. Focusing on DC-DC switch-mode power converters ranging from 50 W to 10kW, DC-DC Converter Topologies provides a survey of all converter topology types within this power range. General principles are described for each topology type using a representative converter as an example. Variations that can be found that differ from the example are then examined, with a helpful discussion of comparisons when relevant. A broad range of topics is covered within the book, from simple, low-power converters to complex, high-power converters and everywhere in between. DC-DC Converter Topologies readers will also find: A detailed discussion of four key DC-DC converter topologies Description of isolated two-switch pulse-width modulated (PWM) topologies including push-pull, half-bridge, and interleaved converters An exploration of high-gain converters such as coupled inductors, voltage multipliers, and switched capacitor converters This book provides the tools so that a non-expert will be equipped to deal with the vast array of DC-DC converters that presently exist. As such, DC-DC Converter Topologies is a useful reference for electrical engineers, professors, and graduate students studying in the field.

Advanced Power Electronics Converters for Future Renewable Energy Systems

Advanced Power Electronics Converters for Future Renewable Energy Systems PDF Author: Neeraj Priyadarshi
Publisher: CRC Press
ISBN: 100085096X
Category : Technology & Engineering
Languages : en
Pages : 358

Book Description
This book narrates an assessment of numerous advanced power converters employed on primitive phase to enhance the efficiency of power translation pertaining to renewable energy systems. It presents the mathematical modelling, analysis, and control of recent power converters topologies, namely, AC/DC, DC/DC, and DC/AC converters. Numerous advanced DC-DC Converters, namely, multi-input DC-DC Converter, Cuk, SEPIC, Zeta and so forth have been assessed mathematically using state space analysis applied with an aim to enhance power efficiency of renewable energy systems. The book: Explains various power electronics converters for different types of renewable energy sources Provides a review of the major power conversion topologies in one book Focuses on experimental analysis rather than simulation work Recommends usage of MATLAB, PSCAD, and PSIM simulation software for detailed analysis Includes DC-DC converters with reasonable peculiar power rating This book is aimed at researchers, graduate students in electric power engineering, power and industrial electronics, and renewable energy.

Advanced DC/DC Converters, Second Edition

Advanced DC/DC Converters, Second Edition PDF Author: Fang Lin Luo
Publisher: CRC Press
ISBN: 131539376X
Category : Technology & Engineering
Languages : en
Pages : 877

Book Description
DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of authors Fang Lin Luo and Hong Ye, DC/DC converters have now been sorted into their six generations, and by a rough count, over 800 different topologies currently exist, with more being developed each year. Advanced DC/DC Converters, Second Edition offers a concise, practical presentation of DC/DC converters, summarizes the spectrum of conversion technologies, and presents new ideas and more than 200 new topologies. Beginning with background material on DC/DC conversion, the book later discusses both voltage lift and super-lift converters. It then proceeds through each generation, including the groundbreaking sixth generation—converters developed by the authors that can be cascaded for high voltage transfer gain. This new edition updates every chapter and offers three new chapters. The introduction of the super-lift technique is an outstanding achievement in DC/DC conversion technology, and the ultra-lift technique and hybrid split-capacitor/inductor applied in Super-Lift Luo-Converters are introduced in Chapters 7 and 8. In Chapter 9, the authors have theoretically defined a new concept, Energy Factor (EF), researched the relations between EF and the mathematical modelling for power DC/DC converters, and demonstrated the modeling method for two converters. More than 320 figures, 60 tables, and 500 formulae allow the reader to more easily grasp the overall structure of advanced DC/DC converters, provide fast access to precise data, and help them to quickly determine the values of their own circuit components.

Advanced DC-DC Power Converters and Switching Converters

Advanced DC-DC Power Converters and Switching Converters PDF Author: Salvatore Musumeci
Publisher: MDPI
ISBN: 303650446X
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.

High-voltage-gain Dc-dc Power Electronic Converters - New Topologies and Classification

High-voltage-gain Dc-dc Power Electronic Converters - New Topologies and Classification PDF Author: Bhanu Prashant Reddy Baddipadiga
Publisher:
ISBN:
Category : DC-to-DC converters
Languages : en
Pages : 118

Book Description
"This dissertation proposes two new high-voltage-gain dc-dc converters for integration of renewable energy sources in 380/400V dc distribution systems. The first high-voltage-gain converter is based on a modified Dickson charge pump voltage multiplier circuit. The second high-voltage-gain converter is based on a non-inverting diode-capacitor voltage multiplier cell. Both the proposed converters offer continuous input current and low voltage stress on switches which make them appealing for applications like integration of renewable energy sources. The proposed converters are capable for drawing power from a single source or two sources while having continuous input current in both cases. Theoretical analysis of the operation of the proposed converters and the component stresses are discussed with supporting simulation and hardware results. This dissertation also proposes a family of high-voltage-gain dc-dc converters that are based on a generalized structure. The two stage general structure consists of a two-phase interleaved (TPI) boost stage and a voltage multiplier (VM) stage. The TPI boost stage results in a classification of the family of converters into non-isolated and isolated converters. A few possible VM stages are discussed. The voltage gain derivations of the TPI boost stages and VM stages are presented in detail. An example converter is discussed with supporting hardware results to verify the general structure. The proposed family of converters can be powered using single source or two sources while having continuous input current in both cases. These high voltage gain dc-dc converters are modular and scalable; making them ideal for harnessing energy from various renewable sources offering power at different levels"--Abstract, page iv.