Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1461208513
Category : Mathematics
Languages : en
Pages : 482
Book Description
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Advanced Topics in the Arithmetic of Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1461208513
Category : Mathematics
Languages : en
Pages : 482
Book Description
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Publisher: Springer Science & Business Media
ISBN: 1461208513
Category : Mathematics
Languages : en
Pages : 482
Book Description
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
The Arithmetic of Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414
Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414
Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Rational Points on Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Elliptic Curves and Arithmetic Invariants
Author: Haruzo Hida
Publisher: Springer Science & Business Media
ISBN: 1461466571
Category : Mathematics
Languages : en
Pages : 464
Book Description
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including μ-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
Publisher: Springer Science & Business Media
ISBN: 1461466571
Category : Mathematics
Languages : en
Pages : 464
Book Description
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including μ-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
Elliptic Curves in Cryptography
Author: Ian F. Blake
Publisher: Cambridge University Press
ISBN: 9780521653749
Category : Computers
Languages : en
Pages : 228
Book Description
This book summarizes knowledge built up within Hewlett-Packard over a number of years, and explains the mathematics behind practical implementations of elliptic curve systems. Due to the advanced nature of the mathematics there is a high barrier to entry for individuals and companies to this technology. Hence this book will be invaluable not only to mathematicians wanting to see how pure mathematics can be applied but also to engineers and computer scientists wishing (or needing) to actually implement such systems.
Publisher: Cambridge University Press
ISBN: 9780521653749
Category : Computers
Languages : en
Pages : 228
Book Description
This book summarizes knowledge built up within Hewlett-Packard over a number of years, and explains the mathematics behind practical implementations of elliptic curve systems. Due to the advanced nature of the mathematics there is a high barrier to entry for individuals and companies to this technology. Hence this book will be invaluable not only to mathematicians wanting to see how pure mathematics can be applied but also to engineers and computer scientists wishing (or needing) to actually implement such systems.
LMSST: 24 Lectures on Elliptic Curves
Author: John William Scott Cassels
Publisher: Cambridge University Press
ISBN: 9780521425308
Category : Mathematics
Languages : en
Pages : 148
Book Description
A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.
Publisher: Cambridge University Press
ISBN: 9780521425308
Category : Mathematics
Languages : en
Pages : 148
Book Description
A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.
Introduction to Elliptic Curves and Modular Forms
Author: Neal I. Koblitz
Publisher: Springer Science & Business Media
ISBN: 1461209099
Category : Mathematics
Languages : en
Pages : 262
Book Description
The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.
Publisher: Springer Science & Business Media
ISBN: 1461209099
Category : Mathematics
Languages : en
Pages : 262
Book Description
The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.
Elliptic Curves
Author: Henry McKean
Publisher: Cambridge University Press
ISBN: 9780521658171
Category : Mathematics
Languages : en
Pages : 300
Book Description
An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.
Publisher: Cambridge University Press
ISBN: 9780521658171
Category : Mathematics
Languages : en
Pages : 300
Book Description
An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.
Advanced Topics in Computational Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 1441984895
Category : Mathematics
Languages : en
Pages : 591
Book Description
Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.
Publisher: Springer Science & Business Media
ISBN: 1441984895
Category : Mathematics
Languages : en
Pages : 591
Book Description
Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.
Elliptic Curves (Second Edition)
Author: James S Milne
Publisher: World Scientific
ISBN: 9811221855
Category : Mathematics
Languages : en
Pages : 319
Book Description
This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.
Publisher: World Scientific
ISBN: 9811221855
Category : Mathematics
Languages : en
Pages : 319
Book Description
This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.