Advanced Process Identification and Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advanced Process Identification and Control PDF full book. Access full book title Advanced Process Identification and Control by Enso Ikonen. Download full books in PDF and EPUB format.

Advanced Process Identification and Control

Advanced Process Identification and Control PDF Author: Enso Ikonen
Publisher: CRC Press
ISBN: 9780824706487
Category : Science
Languages : en
Pages : 336

Book Description
A presentation of techniques in advanced process modelling, identification, prediction, and parameter estimation for the implementation and analysis of industrial systems. The authors cover applications for the identification of linear and non-linear systems, the design of generalized predictive controllers (GPCs), and the control of multivariable systems.

Advanced Process Identification and Control

Advanced Process Identification and Control PDF Author: Enso Ikonen
Publisher: CRC Press
ISBN: 9780824706487
Category : Science
Languages : en
Pages : 336

Book Description
A presentation of techniques in advanced process modelling, identification, prediction, and parameter estimation for the implementation and analysis of industrial systems. The authors cover applications for the identification of linear and non-linear systems, the design of generalized predictive controllers (GPCs), and the control of multivariable systems.

Advanced Process Identification and Control

Advanced Process Identification and Control PDF Author: Enso Ikonen
Publisher: CRC Press
ISBN: 1482294699
Category : Science
Languages : en
Pages : 328

Book Description
A presentation of techniques in advanced process modelling, identification, prediction, and parameter estimation for the implementation and analysis of industrial systems. The authors cover applications for the identification of linear and non-linear systems, the design of generalized predictive controllers (GPCs), and the control of multivariable

Process Identification and PID Control

Process Identification and PID Control PDF Author: Su Whan Sung
Publisher: John Wiley & Sons
ISBN: 9780470824115
Category : Science
Languages : en
Pages : 352

Book Description
Process Identification and PID Control enables students and researchers to understand the basic concepts of feedback control, process identification, autotuning as well as design and implement feedback controllers, especially, PID controllers. The first The first two parts introduce the basics of process control and dynamics, analysis tools (Bode plot, Nyquist plot) to characterize the dynamics of the process, PID controllers and tuning, advanced control strategies which have been widely used in industry. Also, simple simulation techniques required for practical controller designs and research on process identification and autotuning are also included. Part 3 provides useful process identification methods in real industry. It includes several important identification algorithms to obtain frequency models or continuous-time/discrete-time transfer function models from the measured process input and output data sets. Part 4 introduces various relay feedback methods to activate the process effectively for process identification and controller autotuning. Combines the basics with recent research, helping novice to understand advanced topics Brings several industrially important topics together: Dynamics Process identification Controller tuning methods Written by a team of recognized experts in the area Includes all source codes and real-time simulated processes for self-practice Contains problems at the end of every chapter PowerPoint files with lecture notes available for instructor use

Industrial Process Identification and Control Design

Industrial Process Identification and Control Design PDF Author: Tao Liu
Publisher: Springer Science & Business Media
ISBN: 0857299778
Category : Technology & Engineering
Languages : en
Pages : 487

Book Description
Industrial Process Identification and Control Design is devoted to advanced identification and control methods for the operation of continuous-time processes both with and without time delay, in industrial and chemical engineering practice. The simple and practical step- or relay-feedback test is employed when applying the proposed identification techniques, which are classified in terms of common industrial process type: open-loop stable; integrating; and unstable, respectively. Correspondingly, control system design and tuning models that follow are presented for single-input-single-output processes. Furthermore, new two-degree-of-freedom control strategies and cascade control system design methods are explored with reference to independently-improving, set-point tracking and load disturbance rejection. Decoupling, multi-loop, and decentralized control techniques for the operation of multiple-input-multiple-output processes are also detailed. Perfect tracking of a desire output trajectory is realized using iterative learning control in uncertain industrial batch processes. All the proposed methods are presented in an easy-to-follow style, illustrated by examples and practical applications. This book will be valuable for researchers in system identification and control theory, and will also be of interest to graduate control students from process, chemical, and electrical engineering backgrounds and to practising control engineers in the process industry.

Process Modelling, Identification, and Control

Process Modelling, Identification, and Control PDF Author: Ján Mikleš
Publisher: Springer Science & Business Media
ISBN: 3540719709
Category : Technology & Engineering
Languages : en
Pages : 497

Book Description
This compact and original reference and textbook presents the most important classical and modern essentials of control engineering in a single volume. It constitutes a harmonic mixture of control theory and applications, which makes the book especially useful for students, practicing engineers and researchers interested in modeling and control of processes. Well written and easily understandable, it includes a range of methods for the analysis and design of control systems.

Practical Grey-box Process Identification

Practical Grey-box Process Identification PDF Author: Torsten P. Bohlin
Publisher: Springer Science & Business Media
ISBN: 1846284031
Category : Technology & Engineering
Languages : en
Pages : 363

Book Description
This book reviews the theoretical fundamentals of grey-box identification and puts the spotlight on MoCaVa, a MATLAB-compatible software tool, for facilitating the procedure of effective grey-box identification. It demonstrates the application of MoCaVa using two case studies drawn from the paper and steel industries. In addition, the book answers common questions which will help in building accurate models for systems with unknown inputs.

Advanced Practical Process Control

Advanced Practical Process Control PDF Author: Brian Roffel
Publisher: Springer Science & Business Media
ISBN: 9783540404804
Category : Computers
Languages : en
Pages : 328

Book Description
This text and reference offers an application-oriented approach to process control. It systematically explains process identification, control and optimization, the three key steps needed to solve a multivariable control problem. Theory is discussed as far as it is needed to understand and solve the defined problem, while numerous examples written in MATLAB illustrate the problem-solving approach.

System Identification

System Identification PDF Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 0857295225
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Fuzzy Logic, Identification and Predictive Control

Fuzzy Logic, Identification and Predictive Control PDF Author: Jairo Jose Espinosa Oviedo
Publisher: Springer Science & Business Media
ISBN: 1846280877
Category : Technology & Engineering
Languages : en
Pages : 274

Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.

Digital Control Systems

Digital Control Systems PDF Author: Ioan Doré Landau
Publisher: Springer Science & Business Media
ISBN: 1846280567
Category : Technology & Engineering
Languages : en
Pages : 497

Book Description
The extraordinary development of digital computers (microprocessors, microcontrollers) and their extensive use in control systems in all fields of applications has brought about important changes in the design of control systems. Their performance and their low cost make them suitable for use in control systems of various kinds which demand far better capabilities and performances than those provided by analog controllers. However, in order really to take advantage of the capabilities of microprocessors, it is not enough to reproduce the behavior of analog (PID) controllers. One needs to implement specific and high-performance model based control techniques developed for computer-controlled systems (techniques that have been extensively tested in practice). In this context identification of a plant dynamic model from data is a fundamental step in the design of the control system. The book takes into account the fact that the association of books with software and on-line material is radically changing the teaching methods of the control discipline. Despite its interactive character, computer-aided control design software requires the understanding of a number of concepts in order to be used efficiently. The use of software for illustrating the various concepts and algorithms helps understanding and rapidly gives a feeling of the various phenomena.