Author: Mojtaba Aghajani Delavar
Publisher: Academic Press
ISBN: 0323903746
Category : Science
Languages : en
Pages : 266
Book Description
Advanced Mathematical Modelling of Biofilms and its Applications covers the concepts and fundamentals of biofilms, including sections on numerical discrete and numerical continuum models and different biofilms methods, e.g., the lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM). Other sections focus on design, problem-solving and state-of-the-art modelling methods. Addressing the needs to upgrade and update information and knowledge for students, researchers and engineers on biofilms in health care, medicine, food, aquaculture and industry, this book also covers areas of uncertainty and future needs for advancing the use of biofilm models. Over the past 25-30 years, there have been rapid advances in various areas of computer technologies, applications and methods (e.g. complex programming and algorithms, lattice Boltzmann method, high resolution visualization and high-performance computation). These new and emerging technologies are providing unprecedented opportunities to develop modeling frameworks of biofilms and their applications. - Introduces state-of-the-art methods of biofilm modeling, such as integrated lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM) - Provides recent progress in more powerful tools for a deeper understanding of biofilm complexity by implementing state-of-the art biofilm modeling programs - Compares advantages and disadvantages of different biofilm models and analyzes some specific problems for model selection - Evaluates novel process designs without the cost, time and risk of building a physical prototype of the process to identify the most promising designs for experimental testing
Advanced Methods and Mathematical Modeling of Biofilms
Author: Mojtaba Aghajani Delavar
Publisher: Academic Press
ISBN: 0323903746
Category : Science
Languages : en
Pages : 266
Book Description
Advanced Mathematical Modelling of Biofilms and its Applications covers the concepts and fundamentals of biofilms, including sections on numerical discrete and numerical continuum models and different biofilms methods, e.g., the lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM). Other sections focus on design, problem-solving and state-of-the-art modelling methods. Addressing the needs to upgrade and update information and knowledge for students, researchers and engineers on biofilms in health care, medicine, food, aquaculture and industry, this book also covers areas of uncertainty and future needs for advancing the use of biofilm models. Over the past 25-30 years, there have been rapid advances in various areas of computer technologies, applications and methods (e.g. complex programming and algorithms, lattice Boltzmann method, high resolution visualization and high-performance computation). These new and emerging technologies are providing unprecedented opportunities to develop modeling frameworks of biofilms and their applications. - Introduces state-of-the-art methods of biofilm modeling, such as integrated lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM) - Provides recent progress in more powerful tools for a deeper understanding of biofilm complexity by implementing state-of-the art biofilm modeling programs - Compares advantages and disadvantages of different biofilm models and analyzes some specific problems for model selection - Evaluates novel process designs without the cost, time and risk of building a physical prototype of the process to identify the most promising designs for experimental testing
Publisher: Academic Press
ISBN: 0323903746
Category : Science
Languages : en
Pages : 266
Book Description
Advanced Mathematical Modelling of Biofilms and its Applications covers the concepts and fundamentals of biofilms, including sections on numerical discrete and numerical continuum models and different biofilms methods, e.g., the lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM). Other sections focus on design, problem-solving and state-of-the-art modelling methods. Addressing the needs to upgrade and update information and knowledge for students, researchers and engineers on biofilms in health care, medicine, food, aquaculture and industry, this book also covers areas of uncertainty and future needs for advancing the use of biofilm models. Over the past 25-30 years, there have been rapid advances in various areas of computer technologies, applications and methods (e.g. complex programming and algorithms, lattice Boltzmann method, high resolution visualization and high-performance computation). These new and emerging technologies are providing unprecedented opportunities to develop modeling frameworks of biofilms and their applications. - Introduces state-of-the-art methods of biofilm modeling, such as integrated lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM) - Provides recent progress in more powerful tools for a deeper understanding of biofilm complexity by implementing state-of-the art biofilm modeling programs - Compares advantages and disadvantages of different biofilm models and analyzes some specific problems for model selection - Evaluates novel process designs without the cost, time and risk of building a physical prototype of the process to identify the most promising designs for experimental testing
Advanced Mathematical Methods
Author: Francesco Mainardi
Publisher: MDPI
ISBN: 3039282468
Category : Mathematics
Languages : en
Pages : 198
Book Description
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the state-of-the-art of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.
Publisher: MDPI
ISBN: 3039282468
Category : Mathematics
Languages : en
Pages : 198
Book Description
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the state-of-the-art of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.
Mathematical Modeling of Biofilms
Author: IWA Task Group on Biofilm Modeling
Publisher: IWA Publishing
ISBN: 1843390876
Category : Science
Languages : en
Pages : 194
Book Description
Over 90% of bacterial biomass exists in the form of biofilms. The ability of bacteria to attach to surfaces and to form biofilms often is an important competitive advantage for them over bacteria growing in suspension. Some biofilms are "good" in natural and engineered systems; they are responsible for nutrient cycling in nature and are used to purify waters in engineering processes. Other biofilms are "bad" when they cause fouling and infections of humans and plants. Whether we want to promote good biofilms or eliminate bad biofilms, we need to understand how they work and what works to control them. Mathematical Modeling of Biofilms provides guidelines for the selection and use of mathematical models of biofilms. The whole range of existing models - from simple analytical expressions to complex numerical models - is covered. The application of the models for the solution of typical problems is demonstrated, and the performance of the models is tested in comparative studies. With the dramatic evolution of the computational capacity still going on, modeling tools for research and practice will become more and more significant in the next few years. This report provides the foundation to understand the models and to select the most appropriate one for a given use. Mathematical Modeling of Biofilms gives a state-of-the-art overview that is especially valuable for educating students, new biofilm researchers, and design engineers. Through a series of three benchmark problems, the report demonstrates how to use the different models and indicates when simple or highly complex models are most appropriate. This is the first report to give a quantitative comparison of existing biofilm models. The report supports model-based design of biofilm reactors. The report can be used as basis for teaching biofilm-system modeling. The report provides the foundation for researchers seeking to use biofilm modeling or to develop new biofilm models. Scientific and Technical Report No.18
Publisher: IWA Publishing
ISBN: 1843390876
Category : Science
Languages : en
Pages : 194
Book Description
Over 90% of bacterial biomass exists in the form of biofilms. The ability of bacteria to attach to surfaces and to form biofilms often is an important competitive advantage for them over bacteria growing in suspension. Some biofilms are "good" in natural and engineered systems; they are responsible for nutrient cycling in nature and are used to purify waters in engineering processes. Other biofilms are "bad" when they cause fouling and infections of humans and plants. Whether we want to promote good biofilms or eliminate bad biofilms, we need to understand how they work and what works to control them. Mathematical Modeling of Biofilms provides guidelines for the selection and use of mathematical models of biofilms. The whole range of existing models - from simple analytical expressions to complex numerical models - is covered. The application of the models for the solution of typical problems is demonstrated, and the performance of the models is tested in comparative studies. With the dramatic evolution of the computational capacity still going on, modeling tools for research and practice will become more and more significant in the next few years. This report provides the foundation to understand the models and to select the most appropriate one for a given use. Mathematical Modeling of Biofilms gives a state-of-the-art overview that is especially valuable for educating students, new biofilm researchers, and design engineers. Through a series of three benchmark problems, the report demonstrates how to use the different models and indicates when simple or highly complex models are most appropriate. This is the first report to give a quantitative comparison of existing biofilm models. The report supports model-based design of biofilm reactors. The report can be used as basis for teaching biofilm-system modeling. The report provides the foundation for researchers seeking to use biofilm modeling or to develop new biofilm models. Scientific and Technical Report No.18
Pharmaceutical and Nutraceutical Potential of Cyanobacteria
Author: Muhammad Aamer Mehmood
Publisher: Springer Nature
ISBN: 3031455231
Category :
Languages : en
Pages : 357
Book Description
Publisher: Springer Nature
ISBN: 3031455231
Category :
Languages : en
Pages : 357
Book Description
Disease Modelling and Public Health, Part B
Author:
Publisher: Elsevier
ISBN: 0444639764
Category : Mathematics
Languages : en
Pages : 392
Book Description
Handbook of Statistics: Disease Modelling and Public Health, Part B, Volume 37 addresses new challenges in existing and emerging diseases. As a two part volume, this title covers an extensive range of techniques in the field, with this book including chapters on Reaction diffusion equations and their application on bacterial communication, Spike and slab methods in disease modeling, Mathematical modeling of mass screening and parameter estimation, Individual-based and agent-based models for infectious disease transmission and evolution: an overview, and a section on Visual Clustering of Static and Dynamic High Dimensional Data. This volume covers the lack of availability of complete data relating to disease symptoms and disease epidemiology, one of the biggest challenges facing vaccine developers, public health planners, epidemiologists and health sector researchers. - Presents a comprehensive, two-part volume written by leading subject experts - Provides a unique breadth and depth of content coverage - Addresses the most cutting-edge developments in the field
Publisher: Elsevier
ISBN: 0444639764
Category : Mathematics
Languages : en
Pages : 392
Book Description
Handbook of Statistics: Disease Modelling and Public Health, Part B, Volume 37 addresses new challenges in existing and emerging diseases. As a two part volume, this title covers an extensive range of techniques in the field, with this book including chapters on Reaction diffusion equations and their application on bacterial communication, Spike and slab methods in disease modeling, Mathematical modeling of mass screening and parameter estimation, Individual-based and agent-based models for infectious disease transmission and evolution: an overview, and a section on Visual Clustering of Static and Dynamic High Dimensional Data. This volume covers the lack of availability of complete data relating to disease symptoms and disease epidemiology, one of the biggest challenges facing vaccine developers, public health planners, epidemiologists and health sector researchers. - Presents a comprehensive, two-part volume written by leading subject experts - Provides a unique breadth and depth of content coverage - Addresses the most cutting-edge developments in the field
Recent Trends in Biofilm Science and Technology
Author: Manuel Simoes
Publisher: Academic Press
ISBN: 0128194987
Category : Science
Languages : en
Pages : 418
Book Description
Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians. - Presents an overview of the process of biofilm formation and its implications - Provides a clearer understanding of the role of biofilms in infections - Creates a foundation for further research on novel control strategies - Updates readers on the remarkable amount of knowledge on the processes that regulate biofilm formation
Publisher: Academic Press
ISBN: 0128194987
Category : Science
Languages : en
Pages : 418
Book Description
Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians. - Presents an overview of the process of biofilm formation and its implications - Provides a clearer understanding of the role of biofilms in infections - Creates a foundation for further research on novel control strategies - Updates readers on the remarkable amount of knowledge on the processes that regulate biofilm formation
Biofilms in Wastewater Treatment
Author: Stefan Wuertz
Publisher: IWA Publishing
ISBN: 1843390078
Category : Science
Languages : en
Pages : 425
Book Description
The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists. The colour plate section of this book can be downloaded by clicking here. (PDF Format 1 MB)
Publisher: IWA Publishing
ISBN: 1843390078
Category : Science
Languages : en
Pages : 425
Book Description
The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists. The colour plate section of this book can be downloaded by clicking here. (PDF Format 1 MB)
Fundamentals of Biofilm Research, Second Edition
Author: Zbigniew Lewandowski
Publisher: CRC Press
ISBN: 1466559594
Category : Medical
Languages : en
Pages : 666
Book Description
The six years that have passed since the publication of the first edition have brought significant advances in both biofilm research and biofilm engineering, which have matured to the extent that biofilm-based technologies are now being designed and implemented. As a result, many chapters have been updated and expanded with the addition of sections reflecting changes in the status quo in biofilm research and engineering. Emphasizing process analysis, engineering systems, biofilm applications, and mathematical modeling, Fundamentals of Biofilm Research, Second Edition provides the tools to unify and advance biofilm research as a whole. Retaining the goals of the first edition, this second edition serves as: A compendium of knowledge about biofilms and biofilm processes A set of instructions for designing and conducting biofilm experiments A set of instructions for making and using various tools useful in biofilm research A set of computational procedures useful in interpreting results of biofilm research A set of instructions for using the model of stratified biofilms for data interpretation, analysis, and biofilm activity prediction
Publisher: CRC Press
ISBN: 1466559594
Category : Medical
Languages : en
Pages : 666
Book Description
The six years that have passed since the publication of the first edition have brought significant advances in both biofilm research and biofilm engineering, which have matured to the extent that biofilm-based technologies are now being designed and implemented. As a result, many chapters have been updated and expanded with the addition of sections reflecting changes in the status quo in biofilm research and engineering. Emphasizing process analysis, engineering systems, biofilm applications, and mathematical modeling, Fundamentals of Biofilm Research, Second Edition provides the tools to unify and advance biofilm research as a whole. Retaining the goals of the first edition, this second edition serves as: A compendium of knowledge about biofilms and biofilm processes A set of instructions for designing and conducting biofilm experiments A set of instructions for making and using various tools useful in biofilm research A set of computational procedures useful in interpreting results of biofilm research A set of instructions for using the model of stratified biofilms for data interpretation, analysis, and biofilm activity prediction
Mathematical Modeling of Biological Systems, Volume II
Author: Andreas Deutsch
Publisher: Springer Science & Business Media
ISBN: 081764556X
Category : Mathematics
Languages : en
Pages : 383
Book Description
Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.
Publisher: Springer Science & Business Media
ISBN: 081764556X
Category : Mathematics
Languages : en
Pages : 383
Book Description
Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.
Optimization and Applicability of Bioprocesses
Author: Hemant J. Purohit
Publisher: Springer
ISBN: 9811068631
Category : Medical
Languages : en
Pages : 423
Book Description
This book argues that the sustainable management of resources requires a systematic approach that primarily involves the integration of green innovative biotechnological strategies and eco-engineering. It discusses how microbial community intelligence can be used for waste management and bio-remediation and explains how biological processes can be optimized by integrating genomics tools to provide perspectives on sustainable development. The book describes the application of modern molecular techniques such as fluorescence in situ hybridization (FISH), highly sensitive catalyzed reporter deposition (CARD)-FISH, in situ DNA-hybridization chain reaction (HCR) and methods for detecting mRNA and/or functional genes to optimize bioprocessess. These techniques, supplemented with metagenomic analysis, reveal that a large proportion of micro-organisms still remain to be identified and also that they play a vital role in establishing bioprocesses.
Publisher: Springer
ISBN: 9811068631
Category : Medical
Languages : en
Pages : 423
Book Description
This book argues that the sustainable management of resources requires a systematic approach that primarily involves the integration of green innovative biotechnological strategies and eco-engineering. It discusses how microbial community intelligence can be used for waste management and bio-remediation and explains how biological processes can be optimized by integrating genomics tools to provide perspectives on sustainable development. The book describes the application of modern molecular techniques such as fluorescence in situ hybridization (FISH), highly sensitive catalyzed reporter deposition (CARD)-FISH, in situ DNA-hybridization chain reaction (HCR) and methods for detecting mRNA and/or functional genes to optimize bioprocessess. These techniques, supplemented with metagenomic analysis, reveal that a large proportion of micro-organisms still remain to be identified and also that they play a vital role in establishing bioprocesses.