Author: Yoshinobu Aoyagi
Publisher: Springer Science & Business Media
ISBN: 3642335276
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.
Optical Properties of Advanced Materials
Author: Yoshinobu Aoyagi
Publisher: Springer Science & Business Media
ISBN: 3642335276
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.
Publisher: Springer Science & Business Media
ISBN: 3642335276
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.
Advanced Materials in Microwaves and Optics
Author: David Wang
Publisher: Trans Tech Publications Ltd
ISBN: 3038136816
Category : Technology & Engineering
Languages : en
Pages : 871
Book Description
Selected, peer reviewed papers from the 2011 International Conference on Advanced Materials in Microwaves and Optics (AMMO 2011), September 30-October 1, 2011, Bangkok, Thailand
Publisher: Trans Tech Publications Ltd
ISBN: 3038136816
Category : Technology & Engineering
Languages : en
Pages : 871
Book Description
Selected, peer reviewed papers from the 2011 International Conference on Advanced Materials in Microwaves and Optics (AMMO 2011), September 30-October 1, 2011, Bangkok, Thailand
Advanced Materials for Electromagnetic Shielding
Author: Maciej Jaroszewski
Publisher: John Wiley & Sons
ISBN: 1119128617
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
A comprehensive review of the field of materials that shield people and sensitive electronic devices from electromagnetic fields Advanced Materials for Electromagnetic Shielding offers a thorough review of the most recent advances in the processing and characterization of the electromagnetic shielding materials. In this groundbreaking book, the authors—noted experts in the field—discuss the fundamentals of shielding theory as well as the practice of electromagnetic field measuring techniques and systems. They also explore applications of shielding materials used as absorbers of electromagnetic radiation, or as magnetic shields and explore coverage of new advanced materials for EMI shielding in aerospace applications. In addition, the text contains methods of preparation and applicability of metal foams. This comprehensive text examines the influence of technology on the micro-and macrostructure of polymers enabling their use in screening technology, technologies of shielding materials based on textiles, and analyses of its effectiveness in screening. The book also details the method of producing nanowires and their applications in EM shielding. This important resource: Explores the burgeoning market of electromagnetic shielding materials as we create, depend upon, and are exposed to more electronic devices than ever Addresses the most comprehensive issues relating to electromagnetic fields Contains information on the manufacturing, characterization methods, and properties of materials used to protect against them Discusses the important characterization techniques compared with one another, thus allowing scientists to select the best approach to a problem Written for materials scientists, electrical and electronics engineers, physicists, and industrial researchers, Advanced Materials for Electromagnetic Shielding explores all aspects in the area of electromagnetic shielding materials and examines the current state-of-the-art and new challenges in this rapidly growing area.
Publisher: John Wiley & Sons
ISBN: 1119128617
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
A comprehensive review of the field of materials that shield people and sensitive electronic devices from electromagnetic fields Advanced Materials for Electromagnetic Shielding offers a thorough review of the most recent advances in the processing and characterization of the electromagnetic shielding materials. In this groundbreaking book, the authors—noted experts in the field—discuss the fundamentals of shielding theory as well as the practice of electromagnetic field measuring techniques and systems. They also explore applications of shielding materials used as absorbers of electromagnetic radiation, or as magnetic shields and explore coverage of new advanced materials for EMI shielding in aerospace applications. In addition, the text contains methods of preparation and applicability of metal foams. This comprehensive text examines the influence of technology on the micro-and macrostructure of polymers enabling their use in screening technology, technologies of shielding materials based on textiles, and analyses of its effectiveness in screening. The book also details the method of producing nanowires and their applications in EM shielding. This important resource: Explores the burgeoning market of electromagnetic shielding materials as we create, depend upon, and are exposed to more electronic devices than ever Addresses the most comprehensive issues relating to electromagnetic fields Contains information on the manufacturing, characterization methods, and properties of materials used to protect against them Discusses the important characterization techniques compared with one another, thus allowing scientists to select the best approach to a problem Written for materials scientists, electrical and electronics engineers, physicists, and industrial researchers, Advanced Materials for Electromagnetic Shielding explores all aspects in the area of electromagnetic shielding materials and examines the current state-of-the-art and new challenges in this rapidly growing area.
High Power Microwave Sources and Technologies Using Metamaterials
Author: John W. Luginsland
Publisher: John Wiley & Sons
ISBN: 1119384443
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Explore the latest research avenues in the field of high-power microwave sources and metamaterials A stand-alone follow-up to the highly successful High Power Microwave Sources and Technologies, the new High Power Microwave Sources and Technologies Using Metamaterials, demonstrates how metamaterials have impacted the field of high-power microwave sources and the new directions revealed by the latest research. It’s written by a distinguished team of researchers in the area who explore a new paradigm within which to consider the interaction of microwaves with material media. Providing contributions from multiple institutions that discuss theoretical concepts as well as experimental results in slow wave structure design, this edited volume also discusses how traditional periodic structures used since the 1940s and 1950s can have properties that, until recently, were attributed to double negative metamaterial structures. The book also includes: A thorough introduction to high power microwave oscillators and amplifiers, as well as how metamaterials can be introduced as slow wave structures and other components Comprehensive explorations of theoretical concepts in dispersion engineering for slow wave structure design, including multi-transmission line models and particle-in-cell code virtual prototyping models Practical discussions of experimental measurements in dispersion engineering for slow wave structure design In-depth examinations of passive and active components, as well as the temporal evolution of electromagnetic fields High Power Microwave Sources and Technologies Using Metamaterials is a perfect resource for graduate students and researchers in the areas of nuclear and plasma sciences, microwaves, and antennas.
Publisher: John Wiley & Sons
ISBN: 1119384443
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Explore the latest research avenues in the field of high-power microwave sources and metamaterials A stand-alone follow-up to the highly successful High Power Microwave Sources and Technologies, the new High Power Microwave Sources and Technologies Using Metamaterials, demonstrates how metamaterials have impacted the field of high-power microwave sources and the new directions revealed by the latest research. It’s written by a distinguished team of researchers in the area who explore a new paradigm within which to consider the interaction of microwaves with material media. Providing contributions from multiple institutions that discuss theoretical concepts as well as experimental results in slow wave structure design, this edited volume also discusses how traditional periodic structures used since the 1940s and 1950s can have properties that, until recently, were attributed to double negative metamaterial structures. The book also includes: A thorough introduction to high power microwave oscillators and amplifiers, as well as how metamaterials can be introduced as slow wave structures and other components Comprehensive explorations of theoretical concepts in dispersion engineering for slow wave structure design, including multi-transmission line models and particle-in-cell code virtual prototyping models Practical discussions of experimental measurements in dispersion engineering for slow wave structure design In-depth examinations of passive and active components, as well as the temporal evolution of electromagnetic fields High Power Microwave Sources and Technologies Using Metamaterials is a perfect resource for graduate students and researchers in the areas of nuclear and plasma sciences, microwaves, and antennas.
Optical Metamaterials
Author: Wenshan Cai
Publisher: Springer Science & Business Media
ISBN: 1441911510
Category : Science
Languages : en
Pages : 207
Book Description
Metamaterials—artificially structured materials with engineered electromagnetic properties—have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. This book details recent advances in the study of optical metamaterials, ranging from fundamental aspects to up-to-date implementations, in one unified treatment. Important recent developments and applications such as superlens and cloaking devices are also treated in detail and made understandable. The planned monograph can serve as a very timely book for both newcomers and advanced researchers in this extremely rapid evolving field.
Publisher: Springer Science & Business Media
ISBN: 1441911510
Category : Science
Languages : en
Pages : 207
Book Description
Metamaterials—artificially structured materials with engineered electromagnetic properties—have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. This book details recent advances in the study of optical metamaterials, ranging from fundamental aspects to up-to-date implementations, in one unified treatment. Important recent developments and applications such as superlens and cloaking devices are also treated in detail and made understandable. The planned monograph can serve as a very timely book for both newcomers and advanced researchers in this extremely rapid evolving field.
Microwave Processing of Materials
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309050278
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Microwaves can be effectively used in the processing of industrial materials under a wide range of conditions. However, microwave processing is complex and multidisciplinary in nature, and a high degree of technical knowledge is needed to determine how, when, and where the technology can be most profitably utilized. This book assesses the potential of microwave technology for industrial applications, reviews the latest equipment and processing methods, and identifies both the gaps in understanding of microwave processing technology and the promising development opportunities that take advantage of this new technology's unique performance characteristics.
Publisher: National Academies Press
ISBN: 0309050278
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Microwaves can be effectively used in the processing of industrial materials under a wide range of conditions. However, microwave processing is complex and multidisciplinary in nature, and a high degree of technical knowledge is needed to determine how, when, and where the technology can be most profitably utilized. This book assesses the potential of microwave technology for industrial applications, reviews the latest equipment and processing methods, and identifies both the gaps in understanding of microwave processing technology and the promising development opportunities that take advantage of this new technology's unique performance characteristics.
RF / Microwave Interaction with Biological Tissues
Author: André Vander Vorst
Publisher: John Wiley & Sons
ISBN: 0471752045
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
From engineering fundamentals to cutting-edge clinical applications This book examines the biological effects of RF/microwaves and their medical applications. Readers will discover new developments in therapeutic applications in such areas as cardiology, urology, surgery, ophthalmology, and oncology. The authors also present developing applications in such areas as cancer detection and organ imaging. Focusing on frequency ranges from 100 kHz to 10 GHz, RF/Microwave Interaction with Biological Tissues is divided into six chapters: * Fundamentals in Electromagnetics--examines penetration of RF/microwaves into biological tissues; skin effect; relaxation effects in materials and the Cole-Cole model (display); the near field of an antenna; blackbody radiation and the various associated laws; and microwave measurements. * RF/Microwave Interaction Mechanisms in Biological Materials--includes a section devoted to the fundamentals of thermodynamics and a discussion on energy and entropy. * Biological Effects--investigates the effects of radio frequency fields on the nervous system, the brain and spinal cord, the blood-brain barrier, and cells and membranes. * Thermal Therapy--includes a description of applicators and an extensive discussion on the foundation of dielectric heating and inductive heating. * EM-Wave Absorbers Protecting the Biological and Medical Environment--investigates materials for EM-wave absorbers from both a theoretical and applications perspective. Special attention is given to ferrite absorbers. * RF/Microwave Delivery Systems for Therapeutic Applications--begins with the fundamental features of major components used in RF/microwave delivery systems for therapeutic applications. New research towards the development of future measurement techniques is also presented. The book features problem sets at the end of each chapter, making it an excellent introduction for bioengineering and engineering students. Researchers, physicians, and technicians in the field will also find this an excellent reference that offers all the fundamentals, the most cutting-edge applications, and insight into future developments. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Publisher: John Wiley & Sons
ISBN: 0471752045
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
From engineering fundamentals to cutting-edge clinical applications This book examines the biological effects of RF/microwaves and their medical applications. Readers will discover new developments in therapeutic applications in such areas as cardiology, urology, surgery, ophthalmology, and oncology. The authors also present developing applications in such areas as cancer detection and organ imaging. Focusing on frequency ranges from 100 kHz to 10 GHz, RF/Microwave Interaction with Biological Tissues is divided into six chapters: * Fundamentals in Electromagnetics--examines penetration of RF/microwaves into biological tissues; skin effect; relaxation effects in materials and the Cole-Cole model (display); the near field of an antenna; blackbody radiation and the various associated laws; and microwave measurements. * RF/Microwave Interaction Mechanisms in Biological Materials--includes a section devoted to the fundamentals of thermodynamics and a discussion on energy and entropy. * Biological Effects--investigates the effects of radio frequency fields on the nervous system, the brain and spinal cord, the blood-brain barrier, and cells and membranes. * Thermal Therapy--includes a description of applicators and an extensive discussion on the foundation of dielectric heating and inductive heating. * EM-Wave Absorbers Protecting the Biological and Medical Environment--investigates materials for EM-wave absorbers from both a theoretical and applications perspective. Special attention is given to ferrite absorbers. * RF/Microwave Delivery Systems for Therapeutic Applications--begins with the fundamental features of major components used in RF/microwave delivery systems for therapeutic applications. New research towards the development of future measurement techniques is also presented. The book features problem sets at the end of each chapter, making it an excellent introduction for bioengineering and engineering students. Researchers, physicians, and technicians in the field will also find this an excellent reference that offers all the fundamentals, the most cutting-edge applications, and insight into future developments. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Metamaterials
Author: Tie Jun Cui
Publisher: Springer Science & Business Media
ISBN: 1441905731
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.
Publisher: Springer Science & Business Media
ISBN: 1441905731
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.
Optical Materials and Applications
Author: Moriaki Wakaki
Publisher: CRC Press
ISBN: 1420015486
Category : Science
Languages : en
Pages : 317
Book Description
The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also details recent developmental trends, with a focus on basic optical properties of material. Key topics include: Fundamental optical properties of solids Fundamental optical materials (including thin films) from both linear and nonlinear perspectives Use of bulk materials in the design of various modifications Application of optical thin films in artificial components Formation of artificial structures with sub-wavelength dimensions Use of physical or chemical techniques to control lightwave phase One-, two-, and three-dimensional structures used to control dispersion of materials for nanophotonics Progress of the optical waveguide, which makes optical systems more compact and highly efficient This book carefully balances coverage of theory and application of typical optical materials for ultraviolet, visible and infrared, non-linear optics, solid state lasers, optical waveguides, optical thin films and nanophotonics. It addresses both basic ideas and more advanced topics, making it an equally invaluable resource for beginners and active researchers in this growing field.
Publisher: CRC Press
ISBN: 1420015486
Category : Science
Languages : en
Pages : 317
Book Description
The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also details recent developmental trends, with a focus on basic optical properties of material. Key topics include: Fundamental optical properties of solids Fundamental optical materials (including thin films) from both linear and nonlinear perspectives Use of bulk materials in the design of various modifications Application of optical thin films in artificial components Formation of artificial structures with sub-wavelength dimensions Use of physical or chemical techniques to control lightwave phase One-, two-, and three-dimensional structures used to control dispersion of materials for nanophotonics Progress of the optical waveguide, which makes optical systems more compact and highly efficient This book carefully balances coverage of theory and application of typical optical materials for ultraviolet, visible and infrared, non-linear optics, solid state lasers, optical waveguides, optical thin films and nanophotonics. It addresses both basic ideas and more advanced topics, making it an equally invaluable resource for beginners and active researchers in this growing field.
Electromagnetic Metamaterials
Author: Christophe Caloz
Publisher: John Wiley & Sons
ISBN: 0471754315
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Electromagnetic metamaterials-from fundamental physics to advanced engineering applications This book presents an original generalized transmission line approach associated with non-resonant structures that exhibit larger bandwidths, lower loss, and higher design flexibility. It is based on the novel concept of composite right/left-handed (CRLH) transmission line metamaterials (MMs), which has led to the development of novel guided-wave, radiated-wave, and refracted-wave devices and structures. The authors introduced this powerful new concept and are therefore able to offer readers deep insight into the fundamental physics needed to fully grasp the technology. Moreover, they provide a host of practical engineering applications. The book begins with an introductory chapter that places resonant type and transmission line metamaterials in historical perspective. The next six chapters give readers a solid foundation in the fundamentals and practical applications: Fundamentals of LH MMs describes the fundamental physics and exotic properties of left-handed metamaterials TL Theory of MMs establishes the foundations of CRLH structures in three progressive steps: ideal transmission line, LC network, and real distributed structure Two-Dimensional MMs develops both a transmission matrix method and a transmission line method to address the problem of finite-size 2D metamaterials excited by arbitrary sources Guided-Wave Applications and Radiated-Wave Applications present a number of groundbreaking applications developed by the authors The Future of MMs sets forth an expert view on future challenges and prospects This engineering approach to metamaterials paves the way for a new generation of microwave and photonic devices and structures. It is recommended for electrical engineers, as well as physicists and optical engineers, with an interest in practical negative refractive index structures and materials.
Publisher: John Wiley & Sons
ISBN: 0471754315
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Electromagnetic metamaterials-from fundamental physics to advanced engineering applications This book presents an original generalized transmission line approach associated with non-resonant structures that exhibit larger bandwidths, lower loss, and higher design flexibility. It is based on the novel concept of composite right/left-handed (CRLH) transmission line metamaterials (MMs), which has led to the development of novel guided-wave, radiated-wave, and refracted-wave devices and structures. The authors introduced this powerful new concept and are therefore able to offer readers deep insight into the fundamental physics needed to fully grasp the technology. Moreover, they provide a host of practical engineering applications. The book begins with an introductory chapter that places resonant type and transmission line metamaterials in historical perspective. The next six chapters give readers a solid foundation in the fundamentals and practical applications: Fundamentals of LH MMs describes the fundamental physics and exotic properties of left-handed metamaterials TL Theory of MMs establishes the foundations of CRLH structures in three progressive steps: ideal transmission line, LC network, and real distributed structure Two-Dimensional MMs develops both a transmission matrix method and a transmission line method to address the problem of finite-size 2D metamaterials excited by arbitrary sources Guided-Wave Applications and Radiated-Wave Applications present a number of groundbreaking applications developed by the authors The Future of MMs sets forth an expert view on future challenges and prospects This engineering approach to metamaterials paves the way for a new generation of microwave and photonic devices and structures. It is recommended for electrical engineers, as well as physicists and optical engineers, with an interest in practical negative refractive index structures and materials.