Author: Jayaraman Valadi
Publisher: Springer Nature
ISBN: 9819997186
Category :
Languages : en
Pages : 365
Book Description
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Author: Jayaraman Valadi
Publisher: Springer Nature
ISBN: 9819997186
Category :
Languages : en
Pages : 365
Book Description
Publisher: Springer Nature
ISBN: 9819997186
Category :
Languages : en
Pages : 365
Book Description
Metaheuristics in Machine Learning: Theory and Applications
Author: Diego Oliva
Publisher: Springer Nature
ISBN: 3030705420
Category : Computational intelligence
Languages : en
Pages : 765
Book Description
This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
Publisher: Springer Nature
ISBN: 3030705420
Category : Computational intelligence
Languages : en
Pages : 765
Book Description
This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
Evolutionary Algorithms and Chaotic Systems
Author: Ivan Zelinka
Publisher: Springer Science & Business Media
ISBN: 3642107060
Category : Computers
Languages : en
Pages : 533
Book Description
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
Publisher: Springer Science & Business Media
ISBN: 3642107060
Category : Computers
Languages : en
Pages : 533
Book Description
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
Optimization in Machine Learning and Applications
Author: Anand J. Kulkarni
Publisher: Springer Nature
ISBN: 9811509948
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.
Publisher: Springer Nature
ISBN: 9811509948
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.
Metaheuristic and Machine Learning Optimization Strategies for Complex Systems
Author: R., Thanigaivelan
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 423
Book Description
In contemporary engineering domains, optimization and decision-making issues are crucial. Given the vast amounts of available data, processing times and memory usage can be substantial. Developing and implementing novel heuristic algorithms is time-consuming, yet even minor improvements in solutions can significantly reduce computational costs. In such scenarios, the creation of heuristics and metaheuristic algorithms has proven advantageous. The convergence of machine learning and metaheuristic algorithms offers a promising approach to address these challenges. Metaheuristic and Machine Learning Optimization Strategies for Complex Systems covers all areas of comprehensive information about hyper-heuristic models, hybrid meta-heuristic models, nature-inspired computing models, and meta-heuristic models. The key contribution of this book is the construction of a hyper-heuristic approach for any general problem domain from a meta-heuristic algorithm. Covering topics such as cloud computing, internet of things, and performance evaluation, this book is an essential resource for researchers, postgraduate students, educators, data scientists, machine learning engineers, software developers and engineers, policy makers, and more.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 423
Book Description
In contemporary engineering domains, optimization and decision-making issues are crucial. Given the vast amounts of available data, processing times and memory usage can be substantial. Developing and implementing novel heuristic algorithms is time-consuming, yet even minor improvements in solutions can significantly reduce computational costs. In such scenarios, the creation of heuristics and metaheuristic algorithms has proven advantageous. The convergence of machine learning and metaheuristic algorithms offers a promising approach to address these challenges. Metaheuristic and Machine Learning Optimization Strategies for Complex Systems covers all areas of comprehensive information about hyper-heuristic models, hybrid meta-heuristic models, nature-inspired computing models, and meta-heuristic models. The key contribution of this book is the construction of a hyper-heuristic approach for any general problem domain from a meta-heuristic algorithm. Covering topics such as cloud computing, internet of things, and performance evaluation, this book is an essential resource for researchers, postgraduate students, educators, data scientists, machine learning engineers, software developers and engineers, policy makers, and more.
Metaheuristics
Author: El-Ghazali Talbi
Publisher: John Wiley & Sons
ISBN: 0470496908
Category : Computers
Languages : en
Pages : 625
Book Description
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 0470496908
Category : Computers
Languages : en
Pages : 625
Book Description
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
Applications of Hybrid Metaheuristic Algorithms for Image Processing
Author: Diego Oliva
Publisher: Springer Nature
ISBN: 3030409775
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.
Publisher: Springer Nature
ISBN: 3030409775
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.
Metaheuristic and Evolutionary Computation: Algorithms and Applications
Author: Hasmat Malik
Publisher: Springer Nature
ISBN: 9811575711
Category : Technology & Engineering
Languages : en
Pages : 830
Book Description
This book addresses the principles and applications of metaheuristic approaches in engineering and related fields. The first part covers metaheuristics tools and techniques such as ant colony optimization and Tabu search, and their applications to several classes of optimization problems. In turn, the book’s second part focuses on a wide variety of metaheuristics applications in engineering and/or the applied sciences, e.g. in smart grids and renewable energy. In addition, the simulation codes for the problems discussed are included in an appendix for ready reference. Intended for researchers aspiring to learn and apply metaheuristic techniques, and gathering contributions by prominent experts in the field, the book offers readers an essential introduction to metaheuristics, its theoretical aspects and applications.
Publisher: Springer Nature
ISBN: 9811575711
Category : Technology & Engineering
Languages : en
Pages : 830
Book Description
This book addresses the principles and applications of metaheuristic approaches in engineering and related fields. The first part covers metaheuristics tools and techniques such as ant colony optimization and Tabu search, and their applications to several classes of optimization problems. In turn, the book’s second part focuses on a wide variety of metaheuristics applications in engineering and/or the applied sciences, e.g. in smart grids and renewable energy. In addition, the simulation codes for the problems discussed are included in an appendix for ready reference. Intended for researchers aspiring to learn and apply metaheuristic techniques, and gathering contributions by prominent experts in the field, the book offers readers an essential introduction to metaheuristics, its theoretical aspects and applications.
Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application
Author: Bouarara, Hadj Ahmed
Publisher: IGI Global
ISBN: 1668486881
Category : Computers
Languages : en
Pages : 354
Book Description
In the evolving landscape of Web3, the use of advanced machine learning, artificial intelligence, and cybersecurity transforms industries through theoretical exploration and practical application. The integration of advanced machine learning and AI techniques promises enhanced security protocols, predictive analytics, and adaptive defenses against the increasing number of cyber threats. However, these technological improvements also raise questions regarding privacy, transparency, and the ethical implications of AI-driven security measures. Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application explores theories and applications of improved technological techniques in Web 3.0. It addresses the challenges inherent to decentralization while harnessing the benefits offered by advances, thereby paving the way for a safer and more advanced digital era. Covering topics such as fraud detection, cryptocurrency, and data management, this book is a useful resource for computer engineers, financial institutions, security and IT professionals, business owners, researchers, scientists, and academicians.
Publisher: IGI Global
ISBN: 1668486881
Category : Computers
Languages : en
Pages : 354
Book Description
In the evolving landscape of Web3, the use of advanced machine learning, artificial intelligence, and cybersecurity transforms industries through theoretical exploration and practical application. The integration of advanced machine learning and AI techniques promises enhanced security protocols, predictive analytics, and adaptive defenses against the increasing number of cyber threats. However, these technological improvements also raise questions regarding privacy, transparency, and the ethical implications of AI-driven security measures. Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application explores theories and applications of improved technological techniques in Web 3.0. It addresses the challenges inherent to decentralization while harnessing the benefits offered by advances, thereby paving the way for a safer and more advanced digital era. Covering topics such as fraud detection, cryptocurrency, and data management, this book is a useful resource for computer engineers, financial institutions, security and IT professionals, business owners, researchers, scientists, and academicians.
Hybrid Metaheuristics
Author: Francisco Almeida
Publisher: Springer
ISBN: 3540463852
Category : Computers
Languages : en
Pages : 202
Book Description
This book constitutes the refereed proceedings of the Third International Workshop on Hybrid Metaheuristics, HM 2006, held in Gran Canaria, Spain, in October 2006. The 13 revised full papers presented together with one invited paper were carefully reviewed and selected from 42 submissions.
Publisher: Springer
ISBN: 3540463852
Category : Computers
Languages : en
Pages : 202
Book Description
This book constitutes the refereed proceedings of the Third International Workshop on Hybrid Metaheuristics, HM 2006, held in Gran Canaria, Spain, in October 2006. The 13 revised full papers presented together with one invited paper were carefully reviewed and selected from 42 submissions.