Advanced Analysis Techniques and Deep Learning for Atmospheric Measurements PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advanced Analysis Techniques and Deep Learning for Atmospheric Measurements PDF full book. Access full book title Advanced Analysis Techniques and Deep Learning for Atmospheric Measurements by Lenard Lukas Röder. Download full books in PDF and EPUB format.

Advanced Analysis Techniques and Deep Learning for Atmospheric Measurements

Advanced Analysis Techniques and Deep Learning for Atmospheric Measurements PDF Author: Lenard Lukas Röder
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This work explores a wide range of data analysis and signal processing methods for different possible applications in atmospheric measurements. While these methods and applications span a wide area of disciplines, the evaluation of applicability and limitations and the results of this evaluation show many similarities. In the first study, a new framework for the temporal characterization of airborne atmospheric measurement instruments is provided. Allan-Werle-plots are applied to quantify dominant noise structures present in the time series. Their effects on the drift correction capabilities and measurement uncertainty estimation can be evaluated via simulation. This framework is applied to test flights of an airborne field campaign and reveals an appropriate interval between calibration measurements of 30 minutes. During ground operation, the drift correction is able to reduce the measurement uncertainty from 1.1% to 0.2 %. Additional short-term disturbances during airborne operation increase the measurement uncertainty to 1.5 %. In the second study, the applicability and limitations of several noise reduction methods are tested for different background characteristics. The increase in signal-noiseratio and the added bias strongly depend on the background structure. Individual regions of applicability show almost no overlap for the different noise reduction methods. In the third study, a fast and versatile Bayesian method called sequential Monte Carlo filter is explored for several applications in atmospheric field experiments. This algorithm combines information provided via the measurements with prior information from the dominant chemical reactions. Under most conditions the method shows potential for precision enhancement, data coverage increase and extrapolation. Limitations are observed that can be analyzed via the entropy measure and improvements are achieved via the extension by an additional activity parameter. In the final study, state-of-the-art neural network architectures and appropriate data representations are used to reduce the effect of interference fringes in absorption spectroscopy. Using the neural network models as an alternative to linear fitting yields a large bias which renders the model approach not applicable. On the task of background interpolation the neural network approach shows robust de-noising behavior and is shown to be transferable to a different absorption spectrometer setup. Application of the interpolation to the test set lowers the detection limit by 52%. This work highlights the importance of in-depth analysis of the effects and limitations of advanced data analysis techniques to prevent biases and data artifacts and to determine the expected data quality improvements. An elaboration of the limitations is particularly important for deep learning applications. All presented studies show great potential for further applications in atmospheric measurements.

Advanced Analysis Techniques and Deep Learning for Atmospheric Measurements

Advanced Analysis Techniques and Deep Learning for Atmospheric Measurements PDF Author: Lenard Lukas Röder
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This work explores a wide range of data analysis and signal processing methods for different possible applications in atmospheric measurements. While these methods and applications span a wide area of disciplines, the evaluation of applicability and limitations and the results of this evaluation show many similarities. In the first study, a new framework for the temporal characterization of airborne atmospheric measurement instruments is provided. Allan-Werle-plots are applied to quantify dominant noise structures present in the time series. Their effects on the drift correction capabilities and measurement uncertainty estimation can be evaluated via simulation. This framework is applied to test flights of an airborne field campaign and reveals an appropriate interval between calibration measurements of 30 minutes. During ground operation, the drift correction is able to reduce the measurement uncertainty from 1.1% to 0.2 %. Additional short-term disturbances during airborne operation increase the measurement uncertainty to 1.5 %. In the second study, the applicability and limitations of several noise reduction methods are tested for different background characteristics. The increase in signal-noiseratio and the added bias strongly depend on the background structure. Individual regions of applicability show almost no overlap for the different noise reduction methods. In the third study, a fast and versatile Bayesian method called sequential Monte Carlo filter is explored for several applications in atmospheric field experiments. This algorithm combines information provided via the measurements with prior information from the dominant chemical reactions. Under most conditions the method shows potential for precision enhancement, data coverage increase and extrapolation. Limitations are observed that can be analyzed via the entropy measure and improvements are achieved via the extension by an additional activity parameter. In the final study, state-of-the-art neural network architectures and appropriate data representations are used to reduce the effect of interference fringes in absorption spectroscopy. Using the neural network models as an alternative to linear fitting yields a large bias which renders the model approach not applicable. On the task of background interpolation the neural network approach shows robust de-noising behavior and is shown to be transferable to a different absorption spectrometer setup. Application of the interpolation to the test set lowers the detection limit by 52%. This work highlights the importance of in-depth analysis of the effects and limitations of advanced data analysis techniques to prevent biases and data artifacts and to determine the expected data quality improvements. An elaboration of the limitations is particularly important for deep learning applications. All presented studies show great potential for further applications in atmospheric measurements.

Clouds and Climate

Clouds and Climate PDF Author: A. Pier Siebesma
Publisher: Cambridge University Press
ISBN: 1107061075
Category : Mathematics
Languages : en
Pages : 421

Book Description
Comprehensive overview of research on clouds and their role in our present and future climate, for advanced students and researchers.

Tropical Cyclone Intensity Analysis Using Satellite Data

Tropical Cyclone Intensity Analysis Using Satellite Data PDF Author: Vernon F. Dvorak
Publisher:
ISBN:
Category : Cyclone forecasting
Languages : en
Pages : 60

Book Description


Big Data Analytics in Earth, Atmospheric, and Ocean Sciences

Big Data Analytics in Earth, Atmospheric, and Ocean Sciences PDF Author: Thomas Huang
Publisher: John Wiley & Sons
ISBN: 1119467535
Category : Science
Languages : en
Pages : 356

Book Description
Applying tools for data analysis to the rapidly increasing volume of data about the Earth An ever-increasing volume of Earth data is being gathered. These data are “big” not only in size but also in their complexity, different formats, and varied scientific disciplines. As such, big data are disrupting traditional research. New methods and platforms, such as the cloud, are tackling these new challenges. Big Data Analytics in Earth, Atmospheric, and Ocean Sciences explores new tools for the analysis and display of the rapidly increasing volume of data about the Earth. Volume highlights include: An introduction to the breadth of big earth data analytics Architectures developed to support big earth data analytics Different analysis and statistical methods for big earth data Current applications of analytics to Earth science data Challenges to fully implementing big data analytics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more in this Q&A with the editors.

Eddy Covariance Method For Scientific, Regulatory, and Commercial Applications

Eddy Covariance Method For Scientific, Regulatory, and Commercial Applications PDF Author: George Burba
Publisher: LI-COR Biosciences
ISBN: 0578977141
Category : Science
Languages : en
Pages : 702

Book Description
Eddy covariance method is a modern high-precision technique for direct measurements of the movement of gases, water vapor, heat, and momentum between the surface and the atmosphere. It is used for measurements of carbon sequestration and emission rates in natural, agricultural, industrial, and urban environments, atmospheric exchange rates of greenhouse gases, direct mea­surements of evapotranspirative water loss, heat exchange, turbulence rates, and momentum fluxes. The wide range of applications includes numerous fundamental and applied sciences, regulatory and industrial monitoring, multiple aspects of agricultural management, as well as carbon trading and offsets, corporate sustainability and neutrality, among many others. The book “Eddy Covariance Method for Scientific, Regulatory, and Commercial Applications” has been created to familiarize the reader with the general theoretical principles, requirements, applica­tions, planning, processing, and analysis steps of the eddy covariance method. It is intended to assist readers in furthering their understanding of the method and provide refer­ences such as academic textbooks, flux network guidelines, and journal papers. In particular, it is designed to help scientific, industrial, agricultural, and regulatory projects and monitoring programs with experiment design and field deployment of the eddy covariance method. Some of the topics covered in “Eddy Covariance Method for Scientific, Regulatory, and Commercial Applications” include: · Overview of eddy covariance principles · Planning and design of an eddy covariance experiment · Implementation of an eddy covariance experiment · Processing and analysis of eddy covariance data · Networking multiple flux stations · Alternative flux methods · Useful resources, training and knowledge base · Example of planning, design and implementation of a comprehensive automated flux station

Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences PDF Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
ISBN: 1119646162
Category : Technology & Engineering
Languages : en
Pages : 436

Book Description
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

Clouds and Their Climatic Impact

Clouds and Their Climatic Impact PDF Author: Sylvia Sullivan
Publisher: John Wiley & Sons
ISBN: 1119700310
Category : Science
Languages : en
Pages : 371

Book Description
Clouds and Their Climatic Impacts Clouds are an influential and complex element of Earth’s climate system. They evolve rapidly in time and exist over small spatial scales, but also affect global radiative balance and large-scale circulations. With more powerful models and extensive observations now at our disposal, the climate impact of clouds is receiving ever more research attention. Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation presents an overview of our current understanding on various types of clouds and cloud systems and their multifaceted role in the radiative budget, circulation patterns, and rainfall. Volume highlights include: Interactions of aerosol with both liquid and ice clouds Surface and atmospheric cloud radiative feedbacks and effects Arctic, extratropical, and tropical clouds Cloud-circulation coupling at global, meso, and micro scales Precipitation efficiency, phase, and measurements The role of machine learning in understanding clouds and climate The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Machine Vision and Augmented Intelligence—Theory and Applications

Machine Vision and Augmented Intelligence—Theory and Applications PDF Author: Manish Kumar Bajpai
Publisher: Springer Nature
ISBN: 9811650780
Category : Computers
Languages : en
Pages : 681

Book Description
This book comprises the proceedings of the International Conference on Machine Vision and Augmented Intelligence (MAI 2021) held at IIIT, Jabalpur, in February 2021. The conference proceedings encapsulate the best deliberations held during the conference. The diversity of participants in the event from academia, industry, and research reflects in the articles appearing in the volume. The book theme encompasses all industrial and non-industrial applications in which a combination of hardware and software provides operational guidance to devices in the execution of their functions based on the capture and processing of images. This book covers a wide range of topics such as modeling of disease transformation, epidemic forecast, COVID-19, image processing and computer vision, augmented intelligence, soft computing, deep learning, image reconstruction, artificial intelligence in healthcare, brain-computer interface, cybersecurity, and social network analysis, natural language processing, etc.

National Common Entrance Test Teaching Aptitute 4-Year Integrated Teacher Education Programme Guide Book Theory + 400 MCQ with Explanations

National Common Entrance Test Teaching Aptitute 4-Year Integrated Teacher Education Programme Guide Book Theory + 400 MCQ with Explanations PDF Author: DIWAKAR EDUCATION HUB
Publisher: DIWAKAR EDUCATION HUB
ISBN:
Category : Art
Languages : en
Pages : 96

Book Description
National Common Entrance Test Teaching Aptitute 4-Year Integrated Teacher Education Programme Guide Book Theory + 400 MCQ with Explanations

The SAGE Handbook of Remote Sensing

The SAGE Handbook of Remote Sensing PDF Author: Timothy A Warner
Publisher: SAGE
ISBN: 1446246140
Category : Science
Languages : en
Pages : 538

Book Description
′A magnificent achievement. A who′s who of contemporary remote sensing have produced an engaging, wide-ranging and scholarly review of the field in just one volume′ - Professor Paul Curran, Vice-Chancellor, Bournemouth University Remote Sensing acquires and interprets small or large-scale data about the Earth from a distance. Using a wide range of spatial, spectral, temporal, and radiometric scales Remote Sensing is a large and diverse field for which this Handbook will be the key research reference. Organized in four key sections: • Interactions of Electromagnetic Radiation with the Terrestrial Environment: chapters on Visible, Near-IR and Shortwave IR; Middle IR (3-5 micrometers); Thermal IR ; Microwave • Digital sensors and Image Characteristics: chapters on Sensor Technology; Coarse Spatial Resolution Optical Sensors ; Medium Spatial Resolution Optical Sensors; Fine Spatial Resolution Optical Sensors; Video Imaging and Multispectral Digital Photography; Hyperspectral Sensors; Radar and Passive Microwave Sensors; Lidar • Remote Sensing Analysis - Design and Implementation: chapters on Image Pre-Processing; Ground Data Collection; Integration with GIS; Quantitative Models in Remote Sensing; Validation and accuracy assessment; • Remote Sensing Analysis - Applications: LITHOSPHERIC SCIENCES: chapters on Topography; Geology; Soils; PLANT SCIENCES: Vegetation; Agriculture; HYDROSPHERIC and CRYSOPHERIC SCIENCES: Hydrosphere: Fresh and Ocean Water; Cryosphere; GLOBAL CHANGE AND HUMAN ENVIRONMENTS: Earth Systems; Human Environments & Links to the Social Sciences; Real Time Monitoring Systems and Disaster Management; Land Cover Change Illustrated throughout, an essential resource for the analysis of remotely sensed data, the SAGE Handbook of Remote Sensing provides researchers with a definitive statement of the core concepts and methodologies in the discipline.