Additive Manufacturing of Optically Transparent Glass PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Additive Manufacturing of Optically Transparent Glass PDF full book. Access full book title Additive Manufacturing of Optically Transparent Glass by . Download full books in PDF and EPUB format.

Additive Manufacturing of Optically Transparent Glass

Additive Manufacturing of Optically Transparent Glass PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Book Description
The thesis presents an Additive Manufacturing Enabling Technology for Optically Transparent Glass. The platform builds on existing manufacturing traditions and introduces new dimensions of novelty across scales by producing unique structures with numerous potential applications in product-, and architectural-design. The platform is comprised of scalable modular elements able to operate at the high temperatures required to process glass from a molten state to an annealed product. The process demonstrated enables the construction of 3D parts as described by Computer Aided Design (CAD) models. Processing parameters such as temperature, flow rate, layer height and feed rate, can be adjusted to tailor the printing process to the desired component; its shape and its properties. The research explores, defines and hard-codes geometric constraints and coiling patterns as well as the integration of various colors into the current controllable process, contributing to a new design and manufacturing space. Performed characterization of the printed material to determine its morphological, mechanical and optical properties, is presented and discussed. Printed parts demonstrated strong adhesion between layers and satisfying optical clarity. The molten glass 3D printer as well as the fabricated objects exhibited, demonstrate the production of parts which are highly repeatable, enable light transmission, and resemble the visual and mechanical performance of glass constructs that are conventionally obtained. Utilizing the optical nature of glass, complex caustic patterns were created by projecting light through the printed objects. The 3D printed glass objects and process described here, aim to contribute new capabilities to the ever-evolving history of a very challenging but limitless material - glass.

Additive Manufacturing of Optically Transparent Glass

Additive Manufacturing of Optically Transparent Glass PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Book Description
The thesis presents an Additive Manufacturing Enabling Technology for Optically Transparent Glass. The platform builds on existing manufacturing traditions and introduces new dimensions of novelty across scales by producing unique structures with numerous potential applications in product-, and architectural-design. The platform is comprised of scalable modular elements able to operate at the high temperatures required to process glass from a molten state to an annealed product. The process demonstrated enables the construction of 3D parts as described by Computer Aided Design (CAD) models. Processing parameters such as temperature, flow rate, layer height and feed rate, can be adjusted to tailor the printing process to the desired component; its shape and its properties. The research explores, defines and hard-codes geometric constraints and coiling patterns as well as the integration of various colors into the current controllable process, contributing to a new design and manufacturing space. Performed characterization of the printed material to determine its morphological, mechanical and optical properties, is presented and discussed. Printed parts demonstrated strong adhesion between layers and satisfying optical clarity. The molten glass 3D printer as well as the fabricated objects exhibited, demonstrate the production of parts which are highly repeatable, enable light transmission, and resemble the visual and mechanical performance of glass constructs that are conventionally obtained. Utilizing the optical nature of glass, complex caustic patterns were created by projecting light through the printed objects. The 3D printed glass objects and process described here, aim to contribute new capabilities to the ever-evolving history of a very challenging but limitless material - glass.

Towards a New Transparency

Towards a New Transparency PDF Author: Chikara Inamura
Publisher:
ISBN:
Category :
Languages : en
Pages : 145

Book Description
Optically transparent and structurally sound, glass has played a significant role in the evolution of product and architectural design across scales and disciplines, and throughout the ages. Glass processing methods - such as blowing, pressing, and forming - have aimed at achieving increased glass performance and functionality. Nonetheless, techniques and technologies enabling controlled tunability of its optical and mechanical properties at high spatial manufacturing resolution have remained an end without a means. This thesis presents GLASS II - a high fidelity, large-scale, additive manufacturing technology for optically transparent glass combined with demonstrations of novelty through a construction of fully transparent glass structures at architectural scale. The enabling technology builds upon previous research conducted at the Mediated Matter Group and introduces a fundamental restructuring of the platform's architecture and process control informed by the material properties and behaviors of silicate glass. The new manufacturing technology provides a digitally integrated thermal control system across the entire glass forming processes, combined with a novel 4-axis motion control system; enabling a high fidelity manufacturing process capable of producing glass structures with tunable yet predictable mechanical and optical properties. The material fundamentally drives how the machine is used, and in return, the machine can change how the glass is formed and used. In order to evaluate the full capability of this new manufacturing technology, a series of three-meter tall glass column structures were designed, engineered, manufactured, and constructed. Harnessing its optical transparency in conjunction with the spatial tunability of the material deposition across the full length of the column, geometry of each column is topologically optimized under the material constrains of the viscoelastic filament such that the result provides highly efficient structural performance as free standing columns while each layer of the printed glass acts as a lens and transforms the incoming light into spatial interactions of kaleidoscopic caustics. This large-scale multifunctional 3D printed glass structure, embodying a new mode of transparency in architecture, was exhibited in Italy for the first time during the Milan Design Week in April 2017.

3D Printing of Optical Components

3D Printing of Optical Components PDF Author: Andreas Heinrich
Publisher: Springer Nature
ISBN: 3030589609
Category : Science
Languages : en
Pages : 307

Book Description
This edited volume reviews the current state of the art in the additive manufacturing of optical componentry, exploring key principles, materials, processes and applications. A short introduction lets readers familiarize themselves with the fundamental principles of the 3D printing method. This is followed by a chapter on commonly-used and emerging materials for printing of optical components, and subsequent chapters are dedicated to specific topics and case studies. The high potential of additive manufactured optical components is presented based on different manufacturing techniques and accompanied with extensive examples – from nanooptics to large scale optics – and taking research and industrial perspectives. Readers are provided with an extensive overview of the new possibilities brought about by this alternative method for optical components manufacture. Finally, the limitations of the method with respect to manufacturing techniques, materials and optical properties of the generated objects are discussed. With contributions from experts in academia and industry, this work will appeal to a wide readership, from undergraduate students through engineers to researchers interested in modern methods of manufacturing optical components.

Additive Manufacturing of Glass Using a Filament Fed Process

Additive Manufacturing of Glass Using a Filament Fed Process PDF Author: Junjie Luo
Publisher:
ISBN:
Category :
Languages : en
Pages : 129

Book Description
"There are many scientific and engineering applications of glass including optics, communications, electronics, and hermetic seals, there has been minimal research towards the Additive Manufacturing (AM) of transparent glass parts. The special thermal and optical properties of glasses make them hard to be printed using conventional AM techniques. In this dissertation, two different AM techniques for glass AM were developed, Selective Laser Melting (SLM) and filament fed process. Semi-transparent parts were printed with SLM process. However, the filament fed process was found to be more robust and promising for printing optically transparent glass parts. Therefore, this dissertation is focused on filament fed process for different types of glass, including soda lime glass, fused quartz and borosilicate glass. For soda lime glass, the optical quality of the best printed part was found to be as good as furnace cast glass part using the same type of filaments. Optical defects and refractive index inhomogeneity can be linked to the molten region temperature. Furthermore, the mechanism of bubble formation in soda lime glass printing was also studied. Different regimes of bubble formation were found corresponding with different process parameters. Though the melting temperature of fused quartz is very high (~2300 °C), 3D fully transparent cubes with high index homogeneity were printed. For borosilicate glass, 3D fully transparent parts were printed, and the optical quality of best printed sample is as good as conventionally manufactured borosilicate glass"--Abstract, page iv.

Design and Fabrication of a System for the Additive Manufacturing of Transparent Glass

Design and Fabrication of a System for the Additive Manufacturing of Transparent Glass PDF Author: Luke John Gilbert
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Generative Manufacturing of Optical, Thermal and Structural Components (GROTESK)

Generative Manufacturing of Optical, Thermal and Structural Components (GROTESK) PDF Author: Roland Lachmayer
Publisher: Springer Nature
ISBN: 3030965015
Category : Technology & Engineering
Languages : en
Pages : 164

Book Description
The book describes and explains the results of the collaborative project Generative Manufacturing of Optical, Thermal and Structural Components over the last three years. The overall goal is the development of a system concept based on generative manufacturing for integrated optical and optomechanical systems. Different developed generative manufacturing processes for glass and specially designed metal powders have been implemented in a single fabrication set up enabling multi-material manufacturing of optical components and systems. The main focus of the project is split into several topics: simulation, design, material engineering, process engineering, post-processing and component evaluation. The simulation of the glass printing process will be structured iteratively with a comparison of the experimental results in order to be able to finally make a prediction of the necessary parameter sizes for defined components. A metal material with similar thermal conductivity and thermal expansion properties to glass or laser-active crystals has been developed iteratively over the course of the project to enable direct printing onto these materials. In order to demonstrate the potential of generatively manufactured optomechanics for function-integrated systems, the optomechanical components required for a solid-state laser system are manufactured in a polymer-based 3D printing process and their properties are characterized. All these individual projects of the overall network are combined in the system concept.

Additive Manufacturing of Glass

Additive Manufacturing of Glass PDF Author: Bastian E. Rapp
Publisher: Elsevier
ISBN: 0323854893
Category : Technology & Engineering
Languages : en
Pages : 298

Book Description
Additive Manufacturing of Glass: From Science to Applications is a joint effort by the global glass 3D printing community, highlighting the current state of the art, its various applications, as well as its game-changing potential for a wide array of industries in the coming decades. The book starts with separate overviews of glass and additive manufacturing, gradually tying the two together to discuss topics such as melt-derived additive manufacturing of glass, sol-gel chemistry, direct ink deposition techniques, etching-based glass structuring, and slurry-based glass 3D printing. The book then concludes with various case studies and applications for 3D-printed glass, highlighting individual companies producing it and product applications such as bioactive glasses and micro-optics. - Outlines various techniques for additive manufacturing of glass - Includes case studies and applications, highlighting real-world use and commercial opportunities - Covers melt-derived, sol-gel chemistry, photochemical, multiphoton-based etching, and various other additive manufacturing techniques for producing glass

2nd International Conference on Advanced Joining Processes (AJP 2021)

2nd International Conference on Advanced Joining Processes (AJP 2021) PDF Author: Lucas F. M. da Silva
Publisher: Springer Nature
ISBN: 3030954633
Category : Science
Languages : en
Pages : 194

Book Description
This book focusses on all advanced methods of joining such as friction stir welding, joining by plastic deformation, laser welding, advanced mechanical joining, adhesive bonding and hybrid joining. The volume presents the state-of-the-art of advanced methods of joining and also serves as a reference for researchers and graduate students working in this field. This book gathers selected contributions of the 2nd International Conference on Advanced Joining Processes 2021, held in Sintra, Portugal, on October 21–22, 2021.

Additive Manufacturing Technologies

Additive Manufacturing Technologies PDF Author: Ian Gibson
Publisher: Springer
ISBN: 1493921134
Category : Technology & Engineering
Languages : en
Pages : 509

Book Description
This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered

Materials Design and Applications

Materials Design and Applications PDF Author: Lucas F. M. da Silva
Publisher: Springer
ISBN: 3319507842
Category : Technology & Engineering
Languages : en
Pages : 416

Book Description
This volume features fundamental research and applications in the field of the design and application of engineering materials, predominantly within the context of mechanical engineering applications. This includes a wide range of materials engineering and technology, including metals, e.g., polymers, composites, and ceramics. Advanced applications would include manufacturing in the new or newer materials, testing methods, multi-scale experimental and computational aspects. This book features fundamental research and applications in the design of engineering materials, predominantly within the context of mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. It covers a wide range of materials, including metals, polymers, composites, and ceramics. Advanced applications include the manufacturing of new materials, testing methods, multi-scale experimental and computational aspects. p>