Adaptive Formation Control of Cooperative Multi-vehicle Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Adaptive Formation Control of Cooperative Multi-vehicle Systems PDF full book. Access full book title Adaptive Formation Control of Cooperative Multi-vehicle Systems by Samet Guler. Download full books in PDF and EPUB format.

Adaptive Formation Control of Cooperative Multi-vehicle Systems

Adaptive Formation Control of Cooperative Multi-vehicle Systems PDF Author: Samet Guler
Publisher:
ISBN:
Category : Adaptive control systems
Languages : en
Pages : 138

Book Description
The literature comprises many approaches and results for the formation control of multi-vehicle systems; however, the results established for the cases where the vehicles contain parametric uncertainties are limited. Motivated by the need for explicit characterization of the effects of uncertainties on multi-vehicle formation motions, we study distributed adaptive formation control of multi-vehicle systems in this thesis, focusing on different interrelated sub-objectives. We first examine the cohesive motion control problem of minimally persistent formations of autonomous vehicles. Later, we consider parametric uncertainties in vehicle dynamics in such autonomous vehicle formations. Following an indirect adaptive control approach and exploiting the features of the certainty equivalence principle, we propose control laws to solve maneuvering problem of the formations, robust to parametric modeling uncertainties. Next, as a formation acquisition/closing ranks problem, we study the adaptive station keeping problem, which is defined as positioning an autonomous mobile vehicle $A$ inside a multi-vehicle network, having specified distances from the existing vehicles of the network. In this setting, a single-integrator model is assumed for the kinematics for the vehicle $A$, and $A$ is assumed to have access to only its own position and its continuous distance measurements to the vehicles of the network. We partition the problem into two sub-problems; localization of the existing vehicles of the network using range-only measurements and motion control of $A$ to its desired location within the network with respect to other vehicles. We design an indirect adaptive control scheme, provide formal stability and convergence analysis and numerical simulation results, demonstrating the characteristics and performance of the design. Finally, we study re-design of the proposed station keeping scheme for the more challenging case where the vehicle $A$ has non-holonomic motion dynamics and does not have access to its self-location information. Overall, the thesis comprises methods and solutions to four correlated formation control problems in the direction of achieving a unified distributed adaptive formation control framework for multi-vehicle systems.

Adaptive Formation Control of Cooperative Multi-vehicle Systems

Adaptive Formation Control of Cooperative Multi-vehicle Systems PDF Author: Samet Guler
Publisher:
ISBN:
Category : Adaptive control systems
Languages : en
Pages : 138

Book Description
The literature comprises many approaches and results for the formation control of multi-vehicle systems; however, the results established for the cases where the vehicles contain parametric uncertainties are limited. Motivated by the need for explicit characterization of the effects of uncertainties on multi-vehicle formation motions, we study distributed adaptive formation control of multi-vehicle systems in this thesis, focusing on different interrelated sub-objectives. We first examine the cohesive motion control problem of minimally persistent formations of autonomous vehicles. Later, we consider parametric uncertainties in vehicle dynamics in such autonomous vehicle formations. Following an indirect adaptive control approach and exploiting the features of the certainty equivalence principle, we propose control laws to solve maneuvering problem of the formations, robust to parametric modeling uncertainties. Next, as a formation acquisition/closing ranks problem, we study the adaptive station keeping problem, which is defined as positioning an autonomous mobile vehicle $A$ inside a multi-vehicle network, having specified distances from the existing vehicles of the network. In this setting, a single-integrator model is assumed for the kinematics for the vehicle $A$, and $A$ is assumed to have access to only its own position and its continuous distance measurements to the vehicles of the network. We partition the problem into two sub-problems; localization of the existing vehicles of the network using range-only measurements and motion control of $A$ to its desired location within the network with respect to other vehicles. We design an indirect adaptive control scheme, provide formal stability and convergence analysis and numerical simulation results, demonstrating the characteristics and performance of the design. Finally, we study re-design of the proposed station keeping scheme for the more challenging case where the vehicle $A$ has non-holonomic motion dynamics and does not have access to its self-location information. Overall, the thesis comprises methods and solutions to four correlated formation control problems in the direction of achieving a unified distributed adaptive formation control framework for multi-vehicle systems.

Formation Control

Formation Control PDF Author: Hyo-Sung Ahn
Publisher: Springer
ISBN: 3030151875
Category : Technology & Engineering
Languages : en
Pages : 360

Book Description
This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.

Formation Control of Multiple Autonomous Vehicle Systems

Formation Control of Multiple Autonomous Vehicle Systems PDF Author: Hugh H. T. Liu
Publisher: John Wiley & Sons
ISBN: 1119263069
Category : Science
Languages : en
Pages : 268

Book Description
This text explores formation control of vehicle systems and introduces three representative systems: space systems, aerial systems and robotic systems Formation Control of Multiple Autonomous Vehicle Systems offers a review of the core concepts of dynamics and control and examines the dynamics and control aspects of formation control in order to study a wide spectrum of dynamic vehicle systems such as spacecraft, unmanned aerial vehicles and robots. The text puts the focus on formation control that enables and stabilizes formation configuration, as well as formation reconfiguration of these vehicle systems. The authors develop a uniform paradigm of describing vehicle systems’ dynamic behaviour that addresses both individual vehicle’s motion and overall group’s movement, as well as interactions between vehicles. The authors explain how the design of proper control techniques regulate the formation motion of these vehicles and the development of a system level decision-making strategy that increases the level of autonomy for the entire group of vehicles to carry out their missions. The text is filled with illustrative case studies in the domains of space, aerial and robotics. • Contains uniform coverage of "formation" dynamic systems development • Presents representative case studies in selected applications in the space, aerial and robotic systems domains • Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step-by-step instructions as an example • Provides open source example models and simulation codes • Includes notes and further readings that offer details on relevant research topics, recent progress and further developments in the field Written for researchers and academics in robotics and unmanned systems looking at motion synchronization and formation problems, Formation Control of Multiple Autonomous Vehicle Systems is a vital resource that explores the motion synchronization and formation control of vehicle systems as represented by three representative systems: space systems, aerial systems and robotic systems.

Compliant Formation Control of an Autonomous Multiple Vehicle System

Compliant Formation Control of an Autonomous Multiple Vehicle System PDF Author: Erica Zawodny MacArthur
Publisher:
ISBN: 9781109873603
Category :
Languages : en
Pages : 98

Book Description
This research identifies a new strategy called compliant formation control, which may be used to coordinate the navigational structure of a team of autonomous vehicles. This technique controls the team's motion based on a given, desired formation shape and a given, desired set of neighboring separation distances, wherein the formation shape is considered general two-dimensional. The strategy establishes how to select, place, and use virtual springs and dampers that conceptually "force" proper interspacing between neighboring team members. The objective is to continuously maintain, in the most optimal way, the desired formation as team motion proceeds.

Cooperative Control of Dynamical Systems

Cooperative Control of Dynamical Systems PDF Author: Zhihua Qu
Publisher: Springer Science & Business Media
ISBN: 1848823258
Category : Technology & Engineering
Languages : en
Pages : 335

Book Description
Stability theory has allowed us to study both qualitative and quantitative properties of dynamical systems, and control theory has played a key role in designing numerous systems. Contemporary sensing and communication n- works enable collection and subscription of geographically-distributed inf- mation and such information can be used to enhance signi?cantly the perf- manceofmanyofexisting systems. Throughasharedsensing/communication network,heterogeneoussystemscannowbecontrolledtooperaterobustlyand autonomously; cooperative control is to make the systems act as one group and exhibit certain cooperative behavior, and it must be pliable to physical and environmental constraints as well as be robust to intermittency, latency and changing patterns of the information ?ow in the network. This book attempts to provide a detailed coverage on the tools of and the results on analyzing and synthesizing cooperative systems. Dynamical systems under consideration can be either continuous-time or discrete-time, either linear or non-linear, and either unconstrained or constrained. Technical contents of the book are divided into three parts. The ?rst part consists of Chapters 1, 2, and 4. Chapter 1 provides an overview of coope- tive behaviors, kinematical and dynamical modeling approaches, and typical vehicle models. Chapter 2 contains a review of standard analysis and design tools in both linear control theory and non-linear control theory. Chapter 4 is a focused treatment of non-negativematrices and their properties,multipli- tive sequence convergence of non-negative and row-stochastic matrices, and the presence of these matrices and sequences in linear cooperative systems.

Distributed Consensus in Multi-vehicle Cooperative Control

Distributed Consensus in Multi-vehicle Cooperative Control PDF Author: Wei Ren
Publisher: Springer Science & Business Media
ISBN: 1848000154
Category : Technology & Engineering
Languages : en
Pages : 315

Book Description
Assuming only neighbor-neighbor interaction among vehicles, this monograph develops distributed consensus strategies that ensure that the information states of all vehicles in a network converge to a common value. Readers learn to deal with groups of autonomous vehicles in aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.

Cooperative Control

Cooperative Control PDF Author: Vijay Kumar
Publisher: Springer Science & Business Media
ISBN: 9783540228615
Category : Technology & Engineering
Languages : en
Pages : 310

Book Description
Are there universal principles of coordinated group motion and if so what might they be? This carefully edited book presents how natural groupings such as fish schools, bird flocks, deer herds etc. coordinate themselves and move so flawlessly, often without an apparent leader or any form of centralized control. It shows how the underlying principles of cooperative control may be used for groups of mobile autonomous agents to help enable a large group of autonomous robotic vehicles in the air, on land or sea or underwater, to collectively accomplish useful tasks such as distributed, adaptive scientific data gathering, search and rescue, or reconnaissance.

Practical Coordination of Multi-vehicle Systems in Formation

Practical Coordination of Multi-vehicle Systems in Formation PDF Author: Ismail Bayezit
Publisher:
ISBN:
Category :
Languages : en
Pages : 120

Book Description
This thesis considers the cooperation and coordination of multi vehicle systems cohesively in order to keep the formation geometry and provide the string stability. We first present the modeling of aerial and road vehicles representing different motion characteristics suitable for cooperative operations. Then, a set of three dimensional cohesive motion coordination and formation control schemes for teams of autonomous vehicles is proposed. The two main components of these schemes are i) platform free high level online trajectory generation algorithms and ii) individual trajectory tracking controllers. High level algorithms generate the desired trajectories for three dimensional leader-follower structured tight formations, and then distributed controllers provide the individual control of each agent for tracking the desired trajectories. The generic goal of the control scheme is to move the agents while maintaining the formation geometry. We propose a distributed control scheme to solve this problem utilizing the notions of graph rigidity and persistence as well as techniques of virtual target tracking and smooth switching. The distributed control scheme is developed by modeling the agent kinematics as a single-velocity integrator; nevertheless, extension to the cases with simplified kinematic and dynamic models of fixed-wing autonomous aerial vehicles and quadrotors is discussed. The cohesive cooperation in three dimensions is so beneficial for surveillance and reconnaissance activities with optimal geometries, operation security in military activities, more viable with autonomous flying, and future aeronautics aspects, such as fractionated spacecraft and tethered formation flying. We then focus on motion control task modeling for three dimensional agent kinematics and considering parametric uncertainties originated from inertial measurement noise. We design an adaptive controller to perform the three dimensional motion control task, paying attention to the parametric uncertainties, and employing a recently developed immersion and invariance based scheme. Next, the cooperative driving of road vehicles in a platoon and string stability concepts in one-dimensional traffic are discussed. Collaborative driving of commercial vehicles has significant advantages while platooning on highways, including increased road-capacity and reduced traffic congestion in daily traffic. Several companies in the automotive sector have started implementing driver assistance systems and adaptive cruise control (ACC) support, which enables implementation of high level cooperative algorithms with additional softwares and simple electronic modifications. In this context, the cooperative adaptive cruise control approach are discussed for specific urban and highway platooning missions. In addition, we provide details of vehicle parameters, mathematical models of control structures, and experimental tests for the validation of our models. Moreover, the impact of vehicle to vehicle communication in the existence of static road-side units are given. Finally, we propose a set of stability guaranteed controllers for highway platooning missions. Formal problem definition of highway platooning considering constant and velocity dependent spacing strategies, and formal string stability analysis are included. Additionally, we provide the design of novel intervehicle distance based priority coefficient of feed-forward filter for robust platooning. In conclusion, the importance of increasing level of autonomy of single agents and platoon topology is discussed in performing cohesive coordination and collaborative driving missions and in mitigating sensory errors. Simulation and experimental results demonstrate the performance of our cohesive motion and string stable controllers, in addition we discuss application in formation control of autonomous multi-agent systems.

Formation Control of Multiple Autonomous Vehicle Systems

Formation Control of Multiple Autonomous Vehicle Systems PDF Author: Hugh H. T. Liu
Publisher: John Wiley & Sons
ISBN: 1119263042
Category : Science
Languages : en
Pages : 272

Book Description
This text explores formation control of vehicle systems and introduces three representative systems: space systems, aerial systems and robotic systems Formation Control of Multiple Autonomous Vehicle Systems offers a review of the core concepts of dynamics and control and examines the dynamics and control aspects of formation control in order to study a wide spectrum of dynamic vehicle systems such as spacecraft, unmanned aerial vehicles and robots. The text puts the focus on formation control that enables and stabilizes formation configuration, as well as formation reconfiguration of these vehicle systems. The authors develop a uniform paradigm of describing vehicle systems’ dynamic behaviour that addresses both individual vehicle’s motion and overall group’s movement, as well as interactions between vehicles. The authors explain how the design of proper control techniques regulate the formation motion of these vehicles and the development of a system level decision-making strategy that increases the level of autonomy for the entire group of vehicles to carry out their missions. The text is filled with illustrative case studies in the domains of space, aerial and robotics. • Contains uniform coverage of "formation" dynamic systems development • Presents representative case studies in selected applications in the space, aerial and robotic systems domains • Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step-by-step instructions as an example • Provides open source example models and simulation codes • Includes notes and further readings that offer details on relevant research topics, recent progress and further developments in the field Written for researchers and academics in robotics and unmanned systems looking at motion synchronization and formation problems, Formation Control of Multiple Autonomous Vehicle Systems is a vital resource that explores the motion synchronization and formation control of vehicle systems as represented by three representative systems: space systems, aerial systems and robotic systems.

Cooperative Coordination and Formation Control for Multi-agent Systems

Cooperative Coordination and Formation Control for Multi-agent Systems PDF Author: Zhiyong Sun
Publisher: Springer
ISBN: 3319742655
Category : Technology & Engineering
Languages : en
Pages : 189

Book Description
The thesis presents new results on multi-agent formation control, focusing on the distributed stabilization control of rigid formation shapes. It analyzes a range of current research problems such as problems concerning the equilibrium and stability of formation control systems, or the problem of cooperative coordination control when agents have general dynamical models, and discusses practical considerations arising during the implementation of established formation control algorithms. In addition, the thesis presents models of increasing complexity, from single integrator models, to double integrator models, to agents modeled by nonlinear kinematic and dynamic equations, including the familiar unicycle model and nonlinear system equations with drift terms. Presenting the fruits of a close collaboration between several top control groups at leading universities including Yale University, Groningen University, Purdue University and Gwangju Institute of Science and Technology (GIST), the thesis spans various research areas, including robustness issues in formations, quantization-based coordination, exponential stability in formation systems, and cooperative coordination of networked heterogeneous systems.