Author: Jean-Claude Nedelec
Publisher: Springer Science & Business Media
ISBN: 9780387951553
Category : Computers
Languages : en
Pages : 356
Book Description
Acoustic and electromagnetic waves underlie a range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. This book, written by an international researcher, presents some of the research in a complete way. It is useful for graduate students in mathematics, physics, and engineering.
Acoustic and Electromagnetic Equations
Author: Jean-Claude Nedelec
Publisher: Springer Science & Business Media
ISBN: 9780387951553
Category : Computers
Languages : en
Pages : 356
Book Description
Acoustic and electromagnetic waves underlie a range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. This book, written by an international researcher, presents some of the research in a complete way. It is useful for graduate students in mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 9780387951553
Category : Computers
Languages : en
Pages : 356
Book Description
Acoustic and electromagnetic waves underlie a range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. This book, written by an international researcher, presents some of the research in a complete way. It is useful for graduate students in mathematics, physics, and engineering.
Inverse Acoustic and Electromagnetic Scattering Theory
Author: David Colton
Publisher: Springer Science & Business Media
ISBN: 3662028352
Category : Mathematics
Languages : en
Pages : 316
Book Description
It has now been almost ten years since our first book on scattering theory ap peared [32]. At that time we claimed that "in recent years the development of integral equation methods for the direct scattering problem seems to be nearing completion, whereas the use of such an approach to study the inverse scattering problem has progressed to an extent that a 'state of the art' survey appears highly desirable". Since we wrote these words, the inverse scattering problem for acoustic and electromagnetic waves has grown from being a few theoreti cal considerations with limited numerical implementations to a weH developed mathematical theory with tested numerical algorithms. This maturing of the field of inverse scattering theory has been based on the realization that such problems are in general not only nonlinear but also improperly posed in the sense that the solution does not depend continuously on the measured data. This was emphasized in [32] and treated with the ideas and tools available at that time. Now, almost ten years later, these initial ideas have developed to the extent that a monograph summarizing the mathematical basis of the field seems appropriate. This book is oUf attempt to write such a monograph. The inverse scattering problem for acoustic and electromagnetic waves can broadly be divided into two classes, the inverse obstacle problem and the inverse medium problem.
Publisher: Springer Science & Business Media
ISBN: 3662028352
Category : Mathematics
Languages : en
Pages : 316
Book Description
It has now been almost ten years since our first book on scattering theory ap peared [32]. At that time we claimed that "in recent years the development of integral equation methods for the direct scattering problem seems to be nearing completion, whereas the use of such an approach to study the inverse scattering problem has progressed to an extent that a 'state of the art' survey appears highly desirable". Since we wrote these words, the inverse scattering problem for acoustic and electromagnetic waves has grown from being a few theoreti cal considerations with limited numerical implementations to a weH developed mathematical theory with tested numerical algorithms. This maturing of the field of inverse scattering theory has been based on the realization that such problems are in general not only nonlinear but also improperly posed in the sense that the solution does not depend continuously on the measured data. This was emphasized in [32] and treated with the ideas and tools available at that time. Now, almost ten years later, these initial ideas have developed to the extent that a monograph summarizing the mathematical basis of the field seems appropriate. This book is oUf attempt to write such a monograph. The inverse scattering problem for acoustic and electromagnetic waves can broadly be divided into two classes, the inverse obstacle problem and the inverse medium problem.
Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources
Author: Adrian Doicu
Publisher: Academic Press
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
The discrete sources method is an efficient and powerful tool for solving a large class of boundary-value problems in scattering theory. A variety of numerical methods for discrete sources now exist. In this book, the authors unify these formulations in the context of the so-called discrete sources method. Comprehensive presentation of the discrete sources method Original theory - an extension of the conventional null-field method using discrete sources Practical examples that demonstrate the efficiency and flexibility of elaborated methods (scattering by particles with high aspect ratio, rough particles, nonaxisymmetric particles, multiple scattering) List of discrete sources programmes available via the Internet
Publisher: Academic Press
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
The discrete sources method is an efficient and powerful tool for solving a large class of boundary-value problems in scattering theory. A variety of numerical methods for discrete sources now exist. In this book, the authors unify these formulations in the context of the so-called discrete sources method. Comprehensive presentation of the discrete sources method Original theory - an extension of the conventional null-field method using discrete sources Practical examples that demonstrate the efficiency and flexibility of elaborated methods (scattering by particles with high aspect ratio, rough particles, nonaxisymmetric particles, multiple scattering) List of discrete sources programmes available via the Internet
Acoustic and Electromagnetic Waves
Author: Douglas Samuel Jones
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 776
Book Description
From a mathematical point of view, acoustics and electromagnetism exhibit similar phenomena and are tackled with the same kind of technique. Jones's exhaustive study is unique in providing a unified treatment of the two fields, bringing out their common and disparate features and showing how they cross-fertilize one another. The book is designed so that the reader with a familiarity with either Maxwell's Equations or the equation of sound waves in fluid dynamics can follow the developments in both fields without difficulty. This is a comprehensive treatment which will provide a needed reference for researchers in applied mathematics and mathematical physics but also caters to the student, who is taken up to the frontiers of research with the help of appropriate exercises. Engineers with any sort of mathematical competence, particularly electrical engineers and those concerned with communications technology, will need to have access to it.
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 776
Book Description
From a mathematical point of view, acoustics and electromagnetism exhibit similar phenomena and are tackled with the same kind of technique. Jones's exhaustive study is unique in providing a unified treatment of the two fields, bringing out their common and disparate features and showing how they cross-fertilize one another. The book is designed so that the reader with a familiarity with either Maxwell's Equations or the equation of sound waves in fluid dynamics can follow the developments in both fields without difficulty. This is a comprehensive treatment which will provide a needed reference for researchers in applied mathematics and mathematical physics but also caters to the student, who is taken up to the frontiers of research with the help of appropriate exercises. Engineers with any sort of mathematical competence, particularly electrical engineers and those concerned with communications technology, will need to have access to it.
Acoustic and Electromagnetic Equations
Author: Jean-Claude Nedelec
Publisher: Springer Science & Business Media
ISBN: 1475743939
Category : Mathematics
Languages : en
Pages : 328
Book Description
Acoustic and electromagnetic waves underlie a vast range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. Mathematical modeling of these waves has undergone considerable growth in recent years, and this timely book, written by a leading international researcher, presents the research in a careful and complete way.
Publisher: Springer Science & Business Media
ISBN: 1475743939
Category : Mathematics
Languages : en
Pages : 328
Book Description
Acoustic and electromagnetic waves underlie a vast range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. Mathematical modeling of these waves has undergone considerable growth in recent years, and this timely book, written by a leading international researcher, presents the research in a careful and complete way.
Inverse Acoustic and Electromagnetic Scattering Theory
Author: David Colton
Publisher: Springer Science & Business Media
ISBN: 1461449413
Category : Mathematics
Languages : en
Pages : 419
Book Description
The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: “Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come.” SIAM Review, September 1994 “This book should be on the desk of any researcher, any student, any teacher interested in scattering theory.” Mathematical Intelligencer, June 1994
Publisher: Springer Science & Business Media
ISBN: 1461449413
Category : Mathematics
Languages : en
Pages : 419
Book Description
The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: “Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come.” SIAM Review, September 1994 “This book should be on the desk of any researcher, any student, any teacher interested in scattering theory.” Mathematical Intelligencer, June 1994
Wave Fields in Real Media
Author: José M. Carcione
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Formulas of Acoustics
Author: F.P. Mechel
Publisher: Springer Science & Business Media
ISBN: 3662072963
Category : Technology & Engineering
Languages : en
Pages : 1197
Book Description
This application-orientated collection of formulas has been written by applied scientists and industrial engineers for design professionals and students who work in engineering acoustics. It is subdivided into the most important fields of applied acoustics, each dealing with a well-defined type of problem. It provides easy and rapid access to profound and comprehensive information. In order to keep the text as concise as possible, the derivation of a formula is described as briefly as possible and the reader is referred to the original source. Besides the formulas, useful principles and computational procedures are given.
Publisher: Springer Science & Business Media
ISBN: 3662072963
Category : Technology & Engineering
Languages : en
Pages : 1197
Book Description
This application-orientated collection of formulas has been written by applied scientists and industrial engineers for design professionals and students who work in engineering acoustics. It is subdivided into the most important fields of applied acoustics, each dealing with a well-defined type of problem. It provides easy and rapid access to profound and comprehensive information. In order to keep the text as concise as possible, the derivation of a formula is described as briefly as possible and the reader is referred to the original source. Besides the formulas, useful principles and computational procedures are given.
Maxwell’s Equations in Periodic Structures
Author: Gang Bao
Publisher: Springer Nature
ISBN: 9811600619
Category : Mathematics
Languages : en
Pages : 361
Book Description
This book addresses recent developments in mathematical analysis and computational methods for solving direct and inverse problems for Maxwell’s equations in periodic structures. The fundamental importance of the fields is clear, since they are related to technology with significant applications in optics and electromagnetics. The book provides both introductory materials and in-depth discussion to the areas in diffractive optics that offer rich and challenging mathematical problems. It is also intended to convey up-to-date results to students and researchers in applied and computational mathematics, and engineering disciplines as well.
Publisher: Springer Nature
ISBN: 9811600619
Category : Mathematics
Languages : en
Pages : 361
Book Description
This book addresses recent developments in mathematical analysis and computational methods for solving direct and inverse problems for Maxwell’s equations in periodic structures. The fundamental importance of the fields is clear, since they are related to technology with significant applications in optics and electromagnetics. The book provides both introductory materials and in-depth discussion to the areas in diffractive optics that offer rich and challenging mathematical problems. It is also intended to convey up-to-date results to students and researchers in applied and computational mathematics, and engineering disciplines as well.
Integral Equation Methods in Scattering Theory
Author: David Colton
Publisher: SIAM
ISBN: 1611973155
Category : Mathematics
Languages : en
Pages : 286
Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Publisher: SIAM
ISBN: 1611973155
Category : Mathematics
Languages : en
Pages : 286
Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.