Author:
Publisher: DIANE Publishing
ISBN: 1428947043
Category :
Languages : en
Pages : 32
Book Description
Department of Transportation status of achieving key outcomes and addressing major management challenges : report to the ranking minority member, Committee on Governmental Affairs, U.S. Senate.
Author:
Publisher: DIANE Publishing
ISBN: 1428947043
Category :
Languages : en
Pages : 32
Book Description
Publisher: DIANE Publishing
ISBN: 1428947043
Category :
Languages : en
Pages : 32
Book Description
Achieving Product Reliability
Author: Necip Doganaksoy
Publisher: CRC Press
ISBN: 1000401138
Category : Mathematics
Languages : en
Pages : 249
Book Description
Are you buying a car or smartphone or dishwasher? We bet long-term, trouble-free operation (i.e., high reliability) is among the top three things you look for. Reliability problems can lead to everything from minor inconveniences to human disasters. Ensuring high reliability in designing and building manufactured products is principally an engineering challenge–but statistics plays a key role. Achieving Product Reliability explains in a non-technical manner how statistics is used in modern product reliability assurance. Features: Describes applications of statistics in reliability assurance in design, development, validation, manufacturing, and field tracking. Uses real-life examples to illustrate key statistical concepts such as the Weibull and lognormal distributions, hazard rate, and censored data. Demonstrates the use of graphical tools in such areas as accelerated testing, degradation data modeling, and repairable systems data analysis. Presents opportunities for profitably applying statistics in the era of Big Data and Industrial Internet of Things (IIoT) utilizing, for example, the instantaneous transmission of large quantities of field data. Whether you are an intellectually curious citizen, student, manager, budding reliability professional, or academician seeking practical applications, Achieving Product Reliability is a great starting point for a big-picture view of statistics in reliability assurance. The authors are world-renowned experts on this topic with extensive experience as company-wide statistical resources for a global conglomerate, consultants to business and government, and researchers of statistical methods for reliability applications.
Publisher: CRC Press
ISBN: 1000401138
Category : Mathematics
Languages : en
Pages : 249
Book Description
Are you buying a car or smartphone or dishwasher? We bet long-term, trouble-free operation (i.e., high reliability) is among the top three things you look for. Reliability problems can lead to everything from minor inconveniences to human disasters. Ensuring high reliability in designing and building manufactured products is principally an engineering challenge–but statistics plays a key role. Achieving Product Reliability explains in a non-technical manner how statistics is used in modern product reliability assurance. Features: Describes applications of statistics in reliability assurance in design, development, validation, manufacturing, and field tracking. Uses real-life examples to illustrate key statistical concepts such as the Weibull and lognormal distributions, hazard rate, and censored data. Demonstrates the use of graphical tools in such areas as accelerated testing, degradation data modeling, and repairable systems data analysis. Presents opportunities for profitably applying statistics in the era of Big Data and Industrial Internet of Things (IIoT) utilizing, for example, the instantaneous transmission of large quantities of field data. Whether you are an intellectually curious citizen, student, manager, budding reliability professional, or academician seeking practical applications, Achieving Product Reliability is a great starting point for a big-picture view of statistics in reliability assurance. The authors are world-renowned experts on this topic with extensive experience as company-wide statistical resources for a global conglomerate, consultants to business and government, and researchers of statistical methods for reliability applications.
Open Systems Dependability
Author: Mario Tokoro
Publisher: CRC Press
ISBN: 1466577517
Category : Computers
Languages : en
Pages : 194
Book Description
This book describes how to achieve dependability in information systems. The author first proposes viewing systems as open systems instead of closed systems and presents Open Systems Dependability as a property for a system that has the ability to provide optimal services, minimize damage when stoppages occur, resume services quickly, and achieve accountability. He then outlines the DEOS process, an integrative process for achieving the desired dependability in information systems.
Publisher: CRC Press
ISBN: 1466577517
Category : Computers
Languages : en
Pages : 194
Book Description
This book describes how to achieve dependability in information systems. The author first proposes viewing systems as open systems instead of closed systems and presents Open Systems Dependability as a property for a system that has the ability to provide optimal services, minimize damage when stoppages occur, resume services quickly, and achieve accountability. He then outlines the DEOS process, an integrative process for achieving the desired dependability in information systems.
Departments of Veterans Affairs and Housing and Urban Development, and Independent Agencies Appropriations for 1999
Author: United States. Congress. House. Committee on Appropriations. Subcommittee on VA, HUD, and Independent Agencies
Publisher:
ISBN:
Category : Political Science
Languages : en
Pages : 986
Book Description
Publisher:
ISBN:
Category : Political Science
Languages : en
Pages : 986
Book Description
Directory of Published Proceedings
The Journal of Education
Author: Thomas Williams Bicknell
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 1356
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 1356
Book Description
1991 NASA Authorization
Author: United States. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Transportation, Aviation, and Materials
Publisher:
ISBN:
Category :
Languages : en
Pages : 714
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 714
Book Description
Safety-I and Safety-II
Author: Erik Hollnagel
Publisher: CRC Press
ISBN: 1317059794
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
Safety has traditionally been defined as a condition where the number of adverse outcomes was as low as possible (Safety-I). From a Safety-I perspective, the purpose of safety management is to make sure that the number of accidents and incidents is kept as low as possible, or as low as is reasonably practicable. This means that safety management must start from the manifestations of the absence of safety and that - paradoxically - safety is measured by counting the number of cases where it fails rather than by the number of cases where it succeeds. This unavoidably leads to a reactive approach based on responding to what goes wrong or what is identified as a risk - as something that could go wrong. Focusing on what goes right, rather than on what goes wrong, changes the definition of safety from ’avoiding that something goes wrong’ to ’ensuring that everything goes right’. More precisely, Safety-II is the ability to succeed under varying conditions, so that the number of intended and acceptable outcomes is as high as possible. From a Safety-II perspective, the purpose of safety management is to ensure that as much as possible goes right, in the sense that everyday work achieves its objectives. This means that safety is managed by what it achieves (successes, things that go right), and that likewise it is measured by counting the number of cases where things go right. In order to do this, safety management cannot only be reactive, it must also be proactive. But it must be proactive with regard to how actions succeed, to everyday acceptable performance, rather than with regard to how they can fail, as traditional risk analysis does. This book analyses and explains the principles behind both approaches and uses this to consider the past and future of safety management practices. The analysis makes use of common examples and cases from domains such as aviation, nuclear power production, process management and health care. The final chapters explain the theoret
Publisher: CRC Press
ISBN: 1317059794
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
Safety has traditionally been defined as a condition where the number of adverse outcomes was as low as possible (Safety-I). From a Safety-I perspective, the purpose of safety management is to make sure that the number of accidents and incidents is kept as low as possible, or as low as is reasonably practicable. This means that safety management must start from the manifestations of the absence of safety and that - paradoxically - safety is measured by counting the number of cases where it fails rather than by the number of cases where it succeeds. This unavoidably leads to a reactive approach based on responding to what goes wrong or what is identified as a risk - as something that could go wrong. Focusing on what goes right, rather than on what goes wrong, changes the definition of safety from ’avoiding that something goes wrong’ to ’ensuring that everything goes right’. More precisely, Safety-II is the ability to succeed under varying conditions, so that the number of intended and acceptable outcomes is as high as possible. From a Safety-II perspective, the purpose of safety management is to ensure that as much as possible goes right, in the sense that everyday work achieves its objectives. This means that safety is managed by what it achieves (successes, things that go right), and that likewise it is measured by counting the number of cases where things go right. In order to do this, safety management cannot only be reactive, it must also be proactive. But it must be proactive with regard to how actions succeed, to everyday acceptable performance, rather than with regard to how they can fail, as traditional risk analysis does. This book analyses and explains the principles behind both approaches and uses this to consider the past and future of safety management practices. The analysis makes use of common examples and cases from domains such as aviation, nuclear power production, process management and health care. The final chapters explain the theoret
Resilience Engineering Perspectives, Volume 1
Author: Christopher P. Nemeth
Publisher: CRC Press
ISBN: 1351903918
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
In the resilience engineering approach to safety, failures and successes are seen as two different outcomes of the same underlying process, namely how people and organizations cope with complex, underspecified and therefore partly unpredictable work environments. Therefore safety can no longer be ensured by constraining performance and eliminating risks. Instead, it is necessary to actively manage how people and organizations adjust what they do to meet the current conditions of the workplace, by trading off efficiency and thoroughness and by making sacrificing decisions. The Ashgate Studies in Resilience Engineering series promulgates new methods, principles and experiences that can complement established safety management approaches, providing invaluable insights and guidance for practitioners and researchers alike in all safety-critical domains. While the Studies pertain to all complex systems they are of particular interest to high hazard sectors such as aviation, ground transportation, the military, energy production and distribution, and healthcare. Published periodically within this series will be edited volumes titled Resilience Engineering Perspectives. The first volume, Remaining Sensitive to the Possibility of Failure, presents a collection of 20 chapters from international experts. This collection deals with important issues such as measurements and models, the use of procedures to ensure safety, the relation between resilience and robustness, safety management, and the use of risk analysis. The final six chapters utilise the report from a serious medical accident to illustrate more concretely how resilience engineering can make a difference, both to the understanding of how accidents happen and to what an organisation can do to become more resilient.
Publisher: CRC Press
ISBN: 1351903918
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
In the resilience engineering approach to safety, failures and successes are seen as two different outcomes of the same underlying process, namely how people and organizations cope with complex, underspecified and therefore partly unpredictable work environments. Therefore safety can no longer be ensured by constraining performance and eliminating risks. Instead, it is necessary to actively manage how people and organizations adjust what they do to meet the current conditions of the workplace, by trading off efficiency and thoroughness and by making sacrificing decisions. The Ashgate Studies in Resilience Engineering series promulgates new methods, principles and experiences that can complement established safety management approaches, providing invaluable insights and guidance for practitioners and researchers alike in all safety-critical domains. While the Studies pertain to all complex systems they are of particular interest to high hazard sectors such as aviation, ground transportation, the military, energy production and distribution, and healthcare. Published periodically within this series will be edited volumes titled Resilience Engineering Perspectives. The first volume, Remaining Sensitive to the Possibility of Failure, presents a collection of 20 chapters from international experts. This collection deals with important issues such as measurements and models, the use of procedures to ensure safety, the relation between resilience and robustness, safety management, and the use of risk analysis. The final six chapters utilise the report from a serious medical accident to illustrate more concretely how resilience engineering can make a difference, both to the understanding of how accidents happen and to what an organisation can do to become more resilient.