Author: Johan Dahlin
Publisher: Linköping University Electronic Press
ISBN: 9176857972
Category :
Languages : en
Pages : 139
Book Description
Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Accelerating Monte Carlo methods for Bayesian inference in dynamical models
Author: Johan Dahlin
Publisher: Linköping University Electronic Press
ISBN: 9176857972
Category :
Languages : en
Pages : 139
Book Description
Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Publisher: Linköping University Electronic Press
ISBN: 9176857972
Category :
Languages : en
Pages : 139
Book Description
Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Sequential Monte Carlo Methods in Practice
Author: Arnaud Doucet
Publisher: Springer Science & Business Media
ISBN: 1475734379
Category : Mathematics
Languages : en
Pages : 590
Book Description
Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.
Publisher: Springer Science & Business Media
ISBN: 1475734379
Category : Mathematics
Languages : en
Pages : 590
Book Description
Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.
Markov Chain Monte Carlo
Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264
Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264
Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Simulation-based Inference in Econometrics
Author: Roberto Mariano
Publisher: Cambridge University Press
ISBN: 9780521591126
Category : Business & Economics
Languages : en
Pages : 488
Book Description
This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.
Publisher: Cambridge University Press
ISBN: 9780521591126
Category : Business & Economics
Languages : en
Pages : 488
Book Description
This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.
Bayesian Filtering and Smoothing
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments
Author: Kristoffer Bergman
Publisher: Linköping University Electronic Press
ISBN: 9179296777
Category : Electronic books
Languages : en
Pages : 60
Book Description
During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. The objective in optimal motion planning problems is to find feasible motion plans that also optimize a performance measure. From a control perspective, the problem is an instance of an optimal control problem. This thesis addresses optimal motion planning problems for complex dynamical systems that operate in unstructured environments, where no prior reference such as road-lane information is available. Some example scenarios are autonomous docking of vessels in harbors and autonomous parking of self-driving tractor-trailer vehicles at loading sites. The focus is to develop optimal motion planning algorithms that can reliably be applied to these types of problems. This is achieved by combining recent ideas from automatic control, numerical optimization and robotics. The first contribution is a systematic approach for computing local solutions to motion planning problems in challenging unstructured environments. The solutions are computed by combining homotopy methods and direct optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms a state-of-the-art asymptotically optimal motion planner based on random sampling. The second contribution is an optimization-based framework for automatic generation of motion primitives for lattice-based motion planners. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the framework computes a library of motion primitives by simultaneously optimizing the motions and the terminal states. The final contribution of this thesis is a motion planning framework that combines the strengths of sampling-based planners with direct optimal control in a novel way. The sampling-based planner is applied to the problem in a first step using a discretized search space, where the system dynamics and objective function are chosen to coincide with those used in a second step based on optimal control. This combination ensures that the sampling-based motion planner provides a feasible motion plan which is highly suitable as warm-start to the optimal control step. Furthermore, the second step is modified such that it also can be applied in a receding-horizon fashion, where the proposed combination of methods is used to provide theoretical guarantees in terms of recursive feasibility, worst-case objective function value and convergence to the terminal state. The proposed motion planning framework is successfully applied to several problems in challenging unstructured environments for tractor-trailer vehicles. The framework is also applied and tailored for maritime navigation for vessels in archipelagos and harbors, where it is able to compute energy-efficient trajectories which complies with the international regulations for preventing collisions at sea.
Publisher: Linköping University Electronic Press
ISBN: 9179296777
Category : Electronic books
Languages : en
Pages : 60
Book Description
During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. The objective in optimal motion planning problems is to find feasible motion plans that also optimize a performance measure. From a control perspective, the problem is an instance of an optimal control problem. This thesis addresses optimal motion planning problems for complex dynamical systems that operate in unstructured environments, where no prior reference such as road-lane information is available. Some example scenarios are autonomous docking of vessels in harbors and autonomous parking of self-driving tractor-trailer vehicles at loading sites. The focus is to develop optimal motion planning algorithms that can reliably be applied to these types of problems. This is achieved by combining recent ideas from automatic control, numerical optimization and robotics. The first contribution is a systematic approach for computing local solutions to motion planning problems in challenging unstructured environments. The solutions are computed by combining homotopy methods and direct optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms a state-of-the-art asymptotically optimal motion planner based on random sampling. The second contribution is an optimization-based framework for automatic generation of motion primitives for lattice-based motion planners. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the framework computes a library of motion primitives by simultaneously optimizing the motions and the terminal states. The final contribution of this thesis is a motion planning framework that combines the strengths of sampling-based planners with direct optimal control in a novel way. The sampling-based planner is applied to the problem in a first step using a discretized search space, where the system dynamics and objective function are chosen to coincide with those used in a second step based on optimal control. This combination ensures that the sampling-based motion planner provides a feasible motion plan which is highly suitable as warm-start to the optimal control step. Furthermore, the second step is modified such that it also can be applied in a receding-horizon fashion, where the proposed combination of methods is used to provide theoretical guarantees in terms of recursive feasibility, worst-case objective function value and convergence to the terminal state. The proposed motion planning framework is successfully applied to several problems in challenging unstructured environments for tractor-trailer vehicles. The framework is also applied and tailored for maritime navigation for vessels in archipelagos and harbors, where it is able to compute energy-efficient trajectories which complies with the international regulations for preventing collisions at sea.
Inverse system identification with applications in predistortion
Author: Ylva Jung
Publisher: Linköping University Electronic Press
ISBN: 9176851710
Category :
Languages : en
Pages : 224
Book Description
Models are commonly used to simulate events and processes, and can be constructed from measured data using system identification. The common way is to model the system from input to output, but in this thesis we want to obtain the inverse of the system. Power amplifiers (PAs) used in communication devices can be nonlinear, and this causes interference in adjacent transmitting channels. A prefilter, called predistorter, can be used to invert the effects of the PA, such that the combination of predistorter and PA reconstructs an amplified version of the input signal. In this thesis, the predistortion problem has been investigated for outphasing power amplifiers, where the input signal is decomposed into two branches that are amplified separately by highly efficient nonlinear amplifiers and then recombined. We have formulated a model structure describing the imperfections in an outphasing abbrPA and the matching ideal predistorter. The predistorter can be estimated from measured data in different ways. Here, the initially nonconvex optimization problem has been developed into a convex problem. The predistorters have been evaluated in measurements. The goal with the inverse models in this thesis is to use them in cascade with the systems to reconstruct the original input. It is shown that the problems of identifying a model of a preinverse and a postinverse are fundamentally different. It turns out that the true inverse is not necessarily the best one when noise is present, and that other models and structures can lead to better inversion results. To construct a predistorter (for a PA, for example), a model of the inverse is used, and different methods can be used for the estimation. One common method is to estimate a postinverse, and then using it as a preinverse, making it straightforward to try out different model structures. Another is to construct a model of the system and then use it to estimate a preinverse in a second step. This method identifies the inverse in the setup it will be used, but leads to a complicated optimization problem. A third option is to model the forward system and then invert it. This method can be understood using standard identification theory in contrast to the ones above, but the model is tuned for the forward system, not the inverse. Models obtained using the various methods capture different properties of the system, and a more detailed analysis of the methods is presented for linear time-invariant systems and linear approximations of block-oriented systems. The theory is also illustrated in examples. When a preinverse is used, the input to the system will be changed, and typically the input data will be different than the original input. This is why the estimation of preinverses is more complicated than for postinverses, and one set of experimental data is not enough. Here, we have shown that identifying a preinverse in series with the system in repeated experiments can improve the inversion performance.
Publisher: Linköping University Electronic Press
ISBN: 9176851710
Category :
Languages : en
Pages : 224
Book Description
Models are commonly used to simulate events and processes, and can be constructed from measured data using system identification. The common way is to model the system from input to output, but in this thesis we want to obtain the inverse of the system. Power amplifiers (PAs) used in communication devices can be nonlinear, and this causes interference in adjacent transmitting channels. A prefilter, called predistorter, can be used to invert the effects of the PA, such that the combination of predistorter and PA reconstructs an amplified version of the input signal. In this thesis, the predistortion problem has been investigated for outphasing power amplifiers, where the input signal is decomposed into two branches that are amplified separately by highly efficient nonlinear amplifiers and then recombined. We have formulated a model structure describing the imperfections in an outphasing abbrPA and the matching ideal predistorter. The predistorter can be estimated from measured data in different ways. Here, the initially nonconvex optimization problem has been developed into a convex problem. The predistorters have been evaluated in measurements. The goal with the inverse models in this thesis is to use them in cascade with the systems to reconstruct the original input. It is shown that the problems of identifying a model of a preinverse and a postinverse are fundamentally different. It turns out that the true inverse is not necessarily the best one when noise is present, and that other models and structures can lead to better inversion results. To construct a predistorter (for a PA, for example), a model of the inverse is used, and different methods can be used for the estimation. One common method is to estimate a postinverse, and then using it as a preinverse, making it straightforward to try out different model structures. Another is to construct a model of the system and then use it to estimate a preinverse in a second step. This method identifies the inverse in the setup it will be used, but leads to a complicated optimization problem. A third option is to model the forward system and then invert it. This method can be understood using standard identification theory in contrast to the ones above, but the model is tuned for the forward system, not the inverse. Models obtained using the various methods capture different properties of the system, and a more detailed analysis of the methods is presented for linear time-invariant systems and linear approximations of block-oriented systems. The theory is also illustrated in examples. When a preinverse is used, the input to the system will be changed, and typically the input data will be different than the original input. This is why the estimation of preinverses is more complicated than for postinverses, and one set of experimental data is not enough. Here, we have shown that identifying a preinverse in series with the system in repeated experiments can improve the inversion performance.
Bayesian Inference in Dynamic Econometric Models
Author: Luc Bauwens
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370
Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370
Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Markov Chain Monte Carlo
Author: Dani Gamerman
Publisher: CRC Press
ISBN: 148229642X
Category : Mathematics
Languages : en
Pages : 342
Book Description
While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simul
Publisher: CRC Press
ISBN: 148229642X
Category : Mathematics
Languages : en
Pages : 342
Book Description
While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simul
Flight Test System Identification
Author: Roger Larsson
Publisher: Linköping University Electronic Press
ISBN: 9176850706
Category : Science
Languages : en
Pages : 326
Book Description
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.
Publisher: Linköping University Electronic Press
ISBN: 9176850706
Category : Science
Languages : en
Pages : 326
Book Description
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.