Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Scientific and Technical Aerospace Reports
Modeling and Control of EGR on Marine Two-Stroke Diesel Engines
Author: Xavier Llamas
Publisher: Linköping University Electronic Press
ISBN: 9176853683
Category :
Languages : en
Pages : 48
Book Description
The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR. The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions. Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.
Publisher: Linköping University Electronic Press
ISBN: 9176853683
Category :
Languages : en
Pages : 48
Book Description
The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR. The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions. Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.
Two-Stroke Cycle Engine
Author: JohnB. Heywood
Publisher: Routledge
ISBN: 1351406450
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
This book addresses the two-stroke cycle internal combustion engine, used in compact, lightweight form in everything from motorcycles to chainsaws to outboard motors, and in large sizes for marine propulsion and power generation. It first provides an overview of the principles, characteristics, applications, and history of the two-stroke cycle engine, followed by descriptions and evaluations of various types of models that have been developed to predict aspects of two-stroke engine operation.
Publisher: Routledge
ISBN: 1351406450
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
This book addresses the two-stroke cycle internal combustion engine, used in compact, lightweight form in everything from motorcycles to chainsaws to outboard motors, and in large sizes for marine propulsion and power generation. It first provides an overview of the principles, characteristics, applications, and history of the two-stroke cycle engine, followed by descriptions and evaluations of various types of models that have been developed to predict aspects of two-stroke engine operation.
Mathematical Simulation of a Large, Pulse-turbocharged Two-stroke Diesel Engine
Author: Ernst Ehrenfried Streit
Publisher:
ISBN:
Category : Diesel motor
Languages : en
Pages : 684
Book Description
Publisher:
ISBN:
Category : Diesel motor
Languages : en
Pages : 684
Book Description
Monthly Catalogue, United States Public Documents
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 750
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 750
Book Description
Monthly Catalog of United States Government Publications
Design and Simulation of Two-Stroke Engines
Author: Gordon Blair
Publisher: SAE International
ISBN: 1560916850
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
Design and Simulation of Two-Stroke Engines is a unique hands-on information source. The author, having designed and developed many two-stroke engines, offers practical and empirical assistance to the engine designer on many topics ranging from porting layout, to combustion chamber profile, to tuned exhaust pipes. The information presented extends from the most fundamental theory to pragmatic design, development, and experimental testing issues. Chapters cover: Introduction to the Two-Stroke Engine Combustion in Two-Stroke Engines Computer Modeling of Engines Reduction of Fuel Consumption and Exhaust Emissions Reduction of Noise Emission from Two-Stroke Engines and more
Publisher: SAE International
ISBN: 1560916850
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
Design and Simulation of Two-Stroke Engines is a unique hands-on information source. The author, having designed and developed many two-stroke engines, offers practical and empirical assistance to the engine designer on many topics ranging from porting layout, to combustion chamber profile, to tuned exhaust pipes. The information presented extends from the most fundamental theory to pragmatic design, development, and experimental testing issues. Chapters cover: Introduction to the Two-Stroke Engine Combustion in Two-Stroke Engines Computer Modeling of Engines Reduction of Fuel Consumption and Exhaust Emissions Reduction of Noise Emission from Two-Stroke Engines and more
ICT Systems and Sustainability
Author: Milan Tuba
Publisher: Springer Nature
ISBN: 9811582890
Category : Technology & Engineering
Languages : en
Pages : 847
Book Description
This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 5th International Conference on ICT for Sustainable Development (ICT4SD 2020), held in Goa, India, on 23–24 July 2020. The conference provided a valuable forum for cutting-edge research discussions among pioneering researchers, scientists, industrial engineers, and students from all around the world. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.
Publisher: Springer Nature
ISBN: 9811582890
Category : Technology & Engineering
Languages : en
Pages : 847
Book Description
This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 5th International Conference on ICT for Sustainable Development (ICT4SD 2020), held in Goa, India, on 23–24 July 2020. The conference provided a valuable forum for cutting-edge research discussions among pioneering researchers, scientists, industrial engineers, and students from all around the world. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.
Aeronautical Engineering
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 712
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA)
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 712
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA)