Author: R. Mirman
Publisher: World Scientific
ISBN: 9789810233655
Category : Mathematics
Languages : en
Pages : 494
Book Description
A thorough introduction to group theory, this (highly problem-oriented) book goes deeply into the subject to provide a fuller understanding than available anywhere else. The book aims at, not only teaching the material, but also helping to develop the skills needed by a researcher and teacher, possession of which will be highly advantageous in these very competitive times, particularly for those at the early, insecure, stages of their careers. And it is organized and written to serve as a reference to provide a quick introduction giving the essence and vocabulary useful for those who need only some slight knowledge, those just learning, as well as researchers, and especially for the latter it provides a grasp, and often material and perspective, not otherwise available.
Group Theory
Author: R. Mirman
Publisher: World Scientific
ISBN: 9789810233655
Category : Mathematics
Languages : en
Pages : 494
Book Description
A thorough introduction to group theory, this (highly problem-oriented) book goes deeply into the subject to provide a fuller understanding than available anywhere else. The book aims at, not only teaching the material, but also helping to develop the skills needed by a researcher and teacher, possession of which will be highly advantageous in these very competitive times, particularly for those at the early, insecure, stages of their careers. And it is organized and written to serve as a reference to provide a quick introduction giving the essence and vocabulary useful for those who need only some slight knowledge, those just learning, as well as researchers, and especially for the latter it provides a grasp, and often material and perspective, not otherwise available.
Publisher: World Scientific
ISBN: 9789810233655
Category : Mathematics
Languages : en
Pages : 494
Book Description
A thorough introduction to group theory, this (highly problem-oriented) book goes deeply into the subject to provide a fuller understanding than available anywhere else. The book aims at, not only teaching the material, but also helping to develop the skills needed by a researcher and teacher, possession of which will be highly advantageous in these very competitive times, particularly for those at the early, insecure, stages of their careers. And it is organized and written to serve as a reference to provide a quick introduction giving the essence and vocabulary useful for those who need only some slight knowledge, those just learning, as well as researchers, and especially for the latter it provides a grasp, and often material and perspective, not otherwise available.
Geometry Transformed: Euclidean Plane Geometry Based on Rigid Motions
Author: James R. King
Publisher: American Mathematical Soc.
ISBN: 1470463075
Category : Education
Languages : en
Pages : 258
Book Description
Many paths lead into Euclidean plane geometry. Geometry Transformed offers an expeditious yet rigorous route using axioms based on rigid motions and dilations. Since transformations are available at the outset, interesting theorems can be proved sooner; and proofs can be connected to visual and tactile intuition about symmetry and motion. The reader thus gains valuable experience thinking with transformations, a skill that may be useful in other math courses or applications. For students interested in teaching mathematics at the secondary school level, this approach is particularly useful since geometry in the Common Core State Standards is based on rigid motions. The only prerequisite for this book is a basic understanding of functions. Some previous experience with proofs may be helpful, but students can also learn about proofs by experiencing them in this book—in a context where they can draw and experiment. The eleven chapters are organized in a flexible way to suit a variety of curriculum goals. In addition to a geometrical core that includes finite symmetry groups, there are additional topics on circles and on crystallographic and frieze groups, and a final chapter on affine and Cartesian coordinates. The exercises are a mixture of routine problems, experiments, and proofs.
Publisher: American Mathematical Soc.
ISBN: 1470463075
Category : Education
Languages : en
Pages : 258
Book Description
Many paths lead into Euclidean plane geometry. Geometry Transformed offers an expeditious yet rigorous route using axioms based on rigid motions and dilations. Since transformations are available at the outset, interesting theorems can be proved sooner; and proofs can be connected to visual and tactile intuition about symmetry and motion. The reader thus gains valuable experience thinking with transformations, a skill that may be useful in other math courses or applications. For students interested in teaching mathematics at the secondary school level, this approach is particularly useful since geometry in the Common Core State Standards is based on rigid motions. The only prerequisite for this book is a basic understanding of functions. Some previous experience with proofs may be helpful, but students can also learn about proofs by experiencing them in this book—in a context where they can draw and experiment. The eleven chapters are organized in a flexible way to suit a variety of curriculum goals. In addition to a geometrical core that includes finite symmetry groups, there are additional topics on circles and on crystallographic and frieze groups, and a final chapter on affine and Cartesian coordinates. The exercises are a mixture of routine problems, experiments, and proofs.
Geometry, a Transformation Approach
Author: Arthur F. Coxford
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 632
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 632
Book Description
Eureka Math Geometry Study Guide
Author: Great Minds
Publisher: John Wiley & Sons
ISBN: 111881326X
Category : Education
Languages : en
Pages : 147
Book Description
The team of teachers and mathematicians who created Eureka Math believe that it's not enough for students to know the process for solving a problem; they need to know why that process works. That's why students who learn math with Eureka can solve real-world problems, even those they have never encountered before. The Study Guides are a companion to the Eureka Math program, whether you use it online or in print. The guides collect the key components of the curriculum for each grade in a single volume. They also unpack the standards in detail so that anyone—even non-Eureka users—can benefit. The guides are particularly helpful for teachers or trainers seeking to undertake or lead a meaningful study of the grade level content in a way that highlights the coherence between modules and topics. We're here to make sure you succeed with an ever-growing library of resources. Take advantage of the full set of Study Guides available for each grade, PK-12, or materials at eureka-math.org, such as free implementation and pacing guides, material lists, parent resources, and more.
Publisher: John Wiley & Sons
ISBN: 111881326X
Category : Education
Languages : en
Pages : 147
Book Description
The team of teachers and mathematicians who created Eureka Math believe that it's not enough for students to know the process for solving a problem; they need to know why that process works. That's why students who learn math with Eureka can solve real-world problems, even those they have never encountered before. The Study Guides are a companion to the Eureka Math program, whether you use it online or in print. The guides collect the key components of the curriculum for each grade in a single volume. They also unpack the standards in detail so that anyone—even non-Eureka users—can benefit. The guides are particularly helpful for teachers or trainers seeking to undertake or lead a meaningful study of the grade level content in a way that highlights the coherence between modules and topics. We're here to make sure you succeed with an ever-growing library of resources. Take advantage of the full set of Study Guides available for each grade, PK-12, or materials at eureka-math.org, such as free implementation and pacing guides, material lists, parent resources, and more.
E-math Iii' 2007 Ed.(geometry)
Author:
Publisher: Rex Bookstore, Inc.
ISBN: 9789712345333
Category :
Languages : en
Pages : 530
Book Description
Publisher: Rex Bookstore, Inc.
ISBN: 9789712345333
Category :
Languages : en
Pages : 530
Book Description
Transformational Plane Geometry
Author: Ronald N. Umble
Publisher: CRC Press
ISBN: 1482234718
Category : Mathematics
Languages : en
Pages : 239
Book Description
Designed for a one-semester course at the junior undergraduate level, Transformational Plane Geometry takes a hands-on, interactive approach to teaching plane geometry. The book is self-contained, defining basic concepts from linear and abstract algebra gradually as needed. The text adheres to the National Council of Teachers of Mathematics Principles and Standards for School Mathematics and the Common Core State Standards Initiative Standards for Mathematical Practice. Future teachers will acquire the skills needed to effectively apply these standards in their classrooms. Following Felix Klein’s Erlangen Program, the book provides students in pure mathematics and students in teacher training programs with a concrete visual alternative to Euclid’s purely axiomatic approach to plane geometry. It enables geometrical visualization in three ways: Key concepts are motivated with exploratory activities using software specifically designed for performing geometrical constructions, such as Geometer’s Sketchpad. Each concept is introduced synthetically (without coordinates) and analytically (with coordinates). Exercises include numerous geometric constructions that use a reflecting instrument, such as a MIRA. After reviewing the essential principles of classical Euclidean geometry, the book covers general transformations of the plane with particular attention to translations, rotations, reflections, stretches, and their compositions. The authors apply these transformations to study congruence, similarity, and symmetry of plane figures and to classify the isometries and similarities of the plane.
Publisher: CRC Press
ISBN: 1482234718
Category : Mathematics
Languages : en
Pages : 239
Book Description
Designed for a one-semester course at the junior undergraduate level, Transformational Plane Geometry takes a hands-on, interactive approach to teaching plane geometry. The book is self-contained, defining basic concepts from linear and abstract algebra gradually as needed. The text adheres to the National Council of Teachers of Mathematics Principles and Standards for School Mathematics and the Common Core State Standards Initiative Standards for Mathematical Practice. Future teachers will acquire the skills needed to effectively apply these standards in their classrooms. Following Felix Klein’s Erlangen Program, the book provides students in pure mathematics and students in teacher training programs with a concrete visual alternative to Euclid’s purely axiomatic approach to plane geometry. It enables geometrical visualization in three ways: Key concepts are motivated with exploratory activities using software specifically designed for performing geometrical constructions, such as Geometer’s Sketchpad. Each concept is introduced synthetically (without coordinates) and analytically (with coordinates). Exercises include numerous geometric constructions that use a reflecting instrument, such as a MIRA. After reviewing the essential principles of classical Euclidean geometry, the book covers general transformations of the plane with particular attention to translations, rotations, reflections, stretches, and their compositions. The authors apply these transformations to study congruence, similarity, and symmetry of plane figures and to classify the isometries and similarities of the plane.
A Course of Mathematics in Two Volumes, Composed For the Use of the Royal Military Academy
Author: Charles Hutton
Publisher: BoD – Books on Demand
ISBN: 3385117348
Category : Fiction
Languages : en
Pages : 566
Book Description
Reprint of the original, first published in 1843.
Publisher: BoD – Books on Demand
ISBN: 3385117348
Category : Fiction
Languages : en
Pages : 566
Book Description
Reprint of the original, first published in 1843.
Applications of Unitary Symmetry and Combinatorics
Author: James D. Louck
Publisher: World Scientific
ISBN: 9814350729
Category : Mathematics
Languages : en
Pages : 381
Book Description
1. Composite quantum systems. 1.1. Introduction. 1.2. Angular momentum state vectors of a composite system. 1.3. Standard form of the Kronecker direct sum. 1.4. Recoupling matrices. 1.5. Preliminary results on doubly stochastic matrices and permutation matrices. 1.6. Relationship between doubly stochastic matrices and density matrices in angular momentum theory -- 2. Algebra of permutation matrices. 2.1. Introduction. 2.2. Basis sets of permutation matrices -- 3. Coordinates of A in basis [symbol]. 3.1. Notations. 3.2. The A-expansion rule in the basis [symbol]. 3.3. Dual matrices in the basis set [symbol](e, p). 3.4. The general dual matrices in the basis [symbol](e, p) -- 4. Further applications of permutation matrices. 4.1. Introduction. 4.2. An algebra of young operators. 4.3. Matrix Schur functions. 4.4. Real orthogonal irreducible representations of S[symbol]. 4.5. Left and right regular representations of finite groups -- 5. Doubly stochastic matrices in angular momentum theory. 5.1. Introduction. 5.2. Abstractions and interpretations. 5.3. Permutation matrices as doubly stochastic. 5.4 The doubly stochastic matrix for a single system with angular momentum J. 5.5. Doubly stochastic matrices for composite angular momentum systems. 5.6. Binary coupling of angular momenta. 5.7. State vectors : Uncoupled and coupled. 5.8. General binary tree couplings and doubly stochastic matrices -- 6. Magic squares. 6.1. Review. 6.2. Magic squares and addition of angular momenta. 6.3. Rational generating function of H[symbol](r) -- 7. Alternating sign matrices. 7.1. Introduction. 7.2. Standard Gelfand-Tsetlin patterns. 7.3. Strict Gelfand-Tsetlin patterns for [symbol] = (nn-1 ... 21). 7.4. Sign-reversal-shift invariant polynomials. 7.5. The requirement of zeros. 7.6. The incidence matrix formulation -- 8. The Heisenberg magnetic ring. 8.1. Introduction. 8.2. Matrix elements of H in the uncoupled and coupled bases. 8.3. Exact solution of the Heisenberg ring magnet for n = 2,3,4. 8.4. The Heisenberg Ring Hamiltonian : Even n. 8.5. The Heisenberg Ring Hamiltonian : Odd n. 8.6. Recount, synthesis, and critique. 8.7 Action of the cyclic group. 8.8. Concluding remarks
Publisher: World Scientific
ISBN: 9814350729
Category : Mathematics
Languages : en
Pages : 381
Book Description
1. Composite quantum systems. 1.1. Introduction. 1.2. Angular momentum state vectors of a composite system. 1.3. Standard form of the Kronecker direct sum. 1.4. Recoupling matrices. 1.5. Preliminary results on doubly stochastic matrices and permutation matrices. 1.6. Relationship between doubly stochastic matrices and density matrices in angular momentum theory -- 2. Algebra of permutation matrices. 2.1. Introduction. 2.2. Basis sets of permutation matrices -- 3. Coordinates of A in basis [symbol]. 3.1. Notations. 3.2. The A-expansion rule in the basis [symbol]. 3.3. Dual matrices in the basis set [symbol](e, p). 3.4. The general dual matrices in the basis [symbol](e, p) -- 4. Further applications of permutation matrices. 4.1. Introduction. 4.2. An algebra of young operators. 4.3. Matrix Schur functions. 4.4. Real orthogonal irreducible representations of S[symbol]. 4.5. Left and right regular representations of finite groups -- 5. Doubly stochastic matrices in angular momentum theory. 5.1. Introduction. 5.2. Abstractions and interpretations. 5.3. Permutation matrices as doubly stochastic. 5.4 The doubly stochastic matrix for a single system with angular momentum J. 5.5. Doubly stochastic matrices for composite angular momentum systems. 5.6. Binary coupling of angular momenta. 5.7. State vectors : Uncoupled and coupled. 5.8. General binary tree couplings and doubly stochastic matrices -- 6. Magic squares. 6.1. Review. 6.2. Magic squares and addition of angular momenta. 6.3. Rational generating function of H[symbol](r) -- 7. Alternating sign matrices. 7.1. Introduction. 7.2. Standard Gelfand-Tsetlin patterns. 7.3. Strict Gelfand-Tsetlin patterns for [symbol] = (nn-1 ... 21). 7.4. Sign-reversal-shift invariant polynomials. 7.5. The requirement of zeros. 7.6. The incidence matrix formulation -- 8. The Heisenberg magnetic ring. 8.1. Introduction. 8.2. Matrix elements of H in the uncoupled and coupled bases. 8.3. Exact solution of the Heisenberg ring magnet for n = 2,3,4. 8.4. The Heisenberg Ring Hamiltonian : Even n. 8.5. The Heisenberg Ring Hamiltonian : Odd n. 8.6. Recount, synthesis, and critique. 8.7 Action of the cyclic group. 8.8. Concluding remarks
Mathematics and Its Applications
Author: Jairo José da Silva
Publisher: Springer
ISBN: 3319630733
Category : Philosophy
Languages : en
Pages : 274
Book Description
This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.
Publisher: Springer
ISBN: 3319630733
Category : Philosophy
Languages : en
Pages : 274
Book Description
This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.
Elementary Analysis
Author: K. S. Snell
Publisher: Elsevier
ISBN: 1483158985
Category : Mathematics
Languages : en
Pages : 305
Book Description
Elementary Analysis, Volume 2 introduces several of the ideas of modern mathematics in a casual manner and provides the practical experience in algebraic and analytic operations that lays a sound foundation of basic skills. This book focuses on the nature of number, algebraic and logical structure, groups, rings, fields, vector spaces, matrices, sequences, limits, functions and inverse functions, complex numbers, and probability. The logical structure of analysis given through the treatment of differentiation and integration, with applications to the trigonometric and logarithmic functions, is also briefly discussed. This volume begins with a description of the trigonometric functions of the general angle and an introduction to the binomial theorem and series. The rest of the chapters cover the numerical solution of equations, analytical geometry, Argand Diagram, numerical methods, and methods of approximation that form an important section of modern applied mathematics. This publication is valuable to teachers and students in training colleges.
Publisher: Elsevier
ISBN: 1483158985
Category : Mathematics
Languages : en
Pages : 305
Book Description
Elementary Analysis, Volume 2 introduces several of the ideas of modern mathematics in a casual manner and provides the practical experience in algebraic and analytic operations that lays a sound foundation of basic skills. This book focuses on the nature of number, algebraic and logical structure, groups, rings, fields, vector spaces, matrices, sequences, limits, functions and inverse functions, complex numbers, and probability. The logical structure of analysis given through the treatment of differentiation and integration, with applications to the trigonometric and logarithmic functions, is also briefly discussed. This volume begins with a description of the trigonometric functions of the general angle and an introduction to the binomial theorem and series. The rest of the chapters cover the numerical solution of equations, analytical geometry, Argand Diagram, numerical methods, and methods of approximation that form an important section of modern applied mathematics. This publication is valuable to teachers and students in training colleges.