Computation and Combinatorics in Dynamics, Stochastics and Control

Computation and Combinatorics in Dynamics, Stochastics and Control PDF Author: Elena Celledoni
Publisher: Springer
ISBN: 3030015939
Category : Mathematics
Languages : en
Pages : 734

Book Description
The Abel Symposia volume at hand contains a collection of high-quality articles written by the world’s leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.

A Student's Guide to Symplectic Spaces, Grassmannians and Maslov Index

A Student's Guide to Symplectic Spaces, Grassmannians and Maslov Index PDF Author: Paulo Piccione
Publisher:
ISBN: 9788524402838
Category : Symplectic spaces
Languages : en
Pages : 300

Book Description


$J$-Holomorphic Curves and Quantum Cohomology

$J$-Holomorphic Curves and Quantum Cohomology PDF Author: Dusa McDuff
Publisher: American Mathematical Soc.
ISBN: 0821803328
Category : Mathematics
Languages : en
Pages : 220

Book Description
J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.

Introduction to Symplectic Geometry

Introduction to Symplectic Geometry PDF Author: Jean-Louis Koszul
Publisher: Springer
ISBN: 9811339872
Category : Science
Languages : en
Pages : 166

Book Description
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau’s moment map through Souriau’s Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.

ARNOLD: Swimming Against the Tide

ARNOLD: Swimming Against the Tide PDF Author: Boris A. Khesin
Publisher: American Mathematical Society
ISBN: 1470416999
Category : Mathematics
Languages : en
Pages : 221

Book Description
Vladimir Arnold, an eminent mathematician of our time, is known both for his mathematical results, which are many and prominent, and for his strong opinions, often expressed in an uncompromising and provoking manner. His dictum that "Mathematics is a part of physics where experiments are cheap" is well known. This book consists of two parts: selected articles by and an interview with Vladimir Arnold, and a collection of articles about him written by his friends, colleagues, and students. The book is generously illustrated by a large collection of photographs, some never before published. The book presents many a facet of this extraordinary mathematician and man, from his mathematical discoveries to his daredevil outdoor adventures.

J-holomorphic Curves and Symplectic Topology

J-holomorphic Curves and Symplectic Topology PDF Author: Dusa McDuff
Publisher: American Mathematical Soc.
ISBN: 0821887467
Category : Mathematics
Languages : en
Pages : 744

Book Description
The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.

A Student's Guide to Lagrangians and Hamiltonians

A Student's Guide to Lagrangians and Hamiltonians PDF Author: Patrick Hamill
Publisher: Cambridge University Press
ISBN: 1107042887
Category : Mathematics
Languages : en
Pages : 185

Book Description
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.

Vector Fields on Manifolds

Vector Fields on Manifolds PDF Author: Michael Francis Atiyah
Publisher: Springer
ISBN: 3322985032
Category : Mathematics
Languages : en
Pages : 30

Book Description
This paper is a contribution to the topological study of vector fields on manifolds. In particular we shall be concerned with the problems of exist ence of r linearly independent vector fields. For r = 1 the classical result of H. Hopf asserts that the vanishing of the Euler characteristic is the necessary and sufficient condition, and our results will give partial extens ions of Hopf's theorem to the case r > 1. Arecent article by E. Thomas [10] gives a good survey of work in this general area. Our approach to these problems is based on the index theory of elliptic differential operators and is therefore rather different from the standard topological approach. Briefly speaking, what we do is to observe that certain invariants of a manifold (Euler characteristic, signature, etc. ) are indices of elliptic operators (see [5]) and the existence of a certain number of vector fields implies certain symmetry conditions for these operators and hence corresponding results for their indices. In this way we obtain certain necessary conditions for the existence of vector fields and, more generally , for the existence of fields of tangent planes. For example, one of our results is the following THEOREM (1. 1). Let X be a compact oriented smooth manifold 0/ dimension 4 q, and assume that X possesses a tangent fteld of oriented 2-planes (that is, an oriented 2-dimensional sub-bundle 0/ the tangent vector bundle).

Geometric Asymptotics

Geometric Asymptotics PDF Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 0821816330
Category : Mathematics
Languages : en
Pages : 500

Book Description
Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.

Idempotent Analysis

Idempotent Analysis PDF Author: V. P. Maslov
Publisher: American Mathematical Soc.
ISBN: 9780821841143
Category : Function spaces
Languages : en
Pages : 228

Book Description