A Simple Programming Approach to Basic Computability Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Simple Programming Approach to Basic Computability Theory PDF full book. Access full book title A Simple Programming Approach to Basic Computability Theory by Dennis P Gelier. Download full books in PDF and EPUB format.

A Simple Programming Approach to Basic Computability Theory

A Simple Programming Approach to Basic Computability Theory PDF Author: Dennis P Gelier
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Book Description


A Simple Programming Approach to Basic Computability Theory

A Simple Programming Approach to Basic Computability Theory PDF Author: Dennis P Gelier
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Book Description


A Programming Approach to Computability

A Programming Approach to Computability PDF Author: A.J. Kfoury
Publisher: Springer Science & Business Media
ISBN: 1461257492
Category : Mathematics
Languages : en
Pages : 259

Book Description
Computability theory is at the heart of theoretical computer science. Yet, ironically, many of its basic results were discovered by mathematical logicians prior to the development of the first stored-program computer. As a result, many texts on computability theory strike today's computer science students as far removed from their concerns. To remedy this, we base our approach to computability on the language of while-programs, a lean subset of PASCAL, and postpone consideration of such classic models as Turing machines, string-rewriting systems, and p. -recursive functions till the final chapter. Moreover, we balance the presentation of un solvability results such as the unsolvability of the Halting Problem with a presentation of the positive results of modern programming methodology, including the use of proof rules, and the denotational semantics of programs. Computer science seeks to provide a scientific basis for the study of information processing, the solution of problems by algorithms, and the design and programming of computers. The last 40 years have seen increasing sophistication in the science, in the microelectronics which has made machines of staggering complexity economically feasible, in the advances in programming methodology which allow immense programs to be designed with increasing speed and reduced error, and in the develop ment of mathematical techniques to allow the rigorous specification of program, process, and machine.

The Theory of Computer Science

The Theory of Computer Science PDF Author: J. M. Brady
Publisher: Chapman & Hall
ISBN:
Category : Computers
Languages : en
Pages : 314

Book Description


Computability, Complexity, and Languages

Computability, Complexity, and Languages PDF Author: Martin D. Davis
Publisher: Academic Press
ISBN: 1483264580
Category : Reference
Languages : en
Pages : 448

Book Description
Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expansion technique, along with presentations of the regular and context-free languages. Other parts deal with the aspects of logic that are important for computer science and the important theory of computational complexity, as well as the theory of NP-completeness. The closing part introduces the advanced recursion and polynomial-time computability theories, including the priority constructions for recursively enumerable Turing degrees. This book is intended primarily for undergraduate and graduate mathematics students.

Models of Computation

Models of Computation PDF Author: Maribel Fernandez
Publisher: Springer Science & Business Media
ISBN: 1848824343
Category : Computers
Languages : en
Pages : 188

Book Description
A Concise Introduction to Computation Models and Computability Theory provides an introduction to the essential concepts in computability, using several models of computation, from the standard Turing Machines and Recursive Functions, to the modern computation models inspired by quantum physics. An in-depth analysis of the basic concepts underlying each model of computation is provided. Divided into two parts, the first highlights the traditional computation models used in the first studies on computability: - Automata and Turing Machines; - Recursive functions and the Lambda-Calculus; - Logic-based computation models. and the second part covers object-oriented and interaction-based models. There is also a chapter on concurrency, and a final chapter on emergent computation models inspired by quantum mechanics. At the end of each chapter there is a discussion on the use of computation models in the design of programming languages.

Theory of Computation

Theory of Computation PDF Author: George Tourlakis
Publisher: John Wiley & Sons
ISBN: 1118315359
Category : Mathematics
Languages : en
Pages : 410

Book Description
Learn the skills and acquire the intuition to assess the theoretical limitations of computer programming Offering an accessible approach to the topic, Theory of Computation focuses on the metatheory of computing and the theoretical boundaries between what various computational models can do and not do—from the most general model, the URM (Unbounded Register Machines), to the finite automaton. A wealth of programming-like examples and easy-to-follow explanations build the general theory gradually, which guides readers through the modeling and mathematical analysis of computational phenomena and provides insights on what makes things tick and also what restrains the ability of computational processes. Recognizing the importance of acquired practical experience, the book begins with the metatheory of general purpose computer programs, using URMs as a straightforward, technology-independent model of modern high-level programming languages while also exploring the restrictions of the URM language. Once readers gain an understanding of computability theory—including the primitive recursive functions—the author presents automata and languages, covering the regular and context-free languages as well as the machines that recognize these languages. Several advanced topics such as reducibilities, the recursion theorem, complexity theory, and Cook's theorem are also discussed. Features of the book include: A review of basic discrete mathematics, covering logic and induction while omitting specialized combinatorial topics A thorough development of the modeling and mathematical analysis of computational phenomena, providing a solid foundation of un-computability The connection between un-computability and un-provability: Gödel's first incompleteness theorem The book provides numerous examples of specific URMs as well as other programming languages including Loop Programs, FA (Deterministic Finite Automata), NFA (Nondeterministic Finite Automata), and PDA (Pushdown Automata). Exercises at the end of each chapter allow readers to test their comprehension of the presented material, and an extensive bibliography suggests resources for further study. Assuming only a basic understanding of general computer programming and discrete mathematics, Theory of Computation serves as a valuable book for courses on theory of computation at the upper-undergraduate level. The book also serves as an excellent resource for programmers and computing professionals wishing to understand the theoretical limitations of their craft.

Computational Complexity

Computational Complexity PDF Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609

Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

What Can Be Computed?

What Can Be Computed? PDF Author: John MacCormick
Publisher: Princeton University Press
ISBN: 0691170665
Category : Computers
Languages : en
Pages : 404

Book Description
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com

Theory of Computer Science a Programming Approach

Theory of Computer Science a Programming Approach PDF Author: Brady
Publisher:
ISBN: 9780470267035
Category :
Languages : en
Pages : 287

Book Description


A Concise Introduction to Languages and Machines

A Concise Introduction to Languages and Machines PDF Author: Alan P. Parkes
Publisher: Springer Science & Business Media
ISBN: 1848001215
Category : Computers
Languages : en
Pages : 348

Book Description
A Concise Introduction to Languages, Machines and Logic provides an accessible introduction to three key topics within computer science: formal languages, abstract machines and formal logic. Written in an easy-to-read, informal style, this textbook assumes only a basic knowledge of programming on the part of the reader. The approach is deliberately non-mathematical, and features: - Clear explanations of formal notation and jargon, - Extensive use of examples to illustrate algorithms and proofs, - Pictorial representations of key concepts, - Chapter opening overviews providing an introduction and guidance to each topic, - End-of-chapter exercises and solutions, - Offers an intuitive approach to the topics. This reader-friendly textbook has been written with undergraduates in mind and will be suitable for use on course covering formal languages, formal logic, computability and automata theory. It will also make an excellent supplementary text for courses on algorithm complexity and compilers.