A Self Assembly Approach to Localization and Patterning of Optically Resolved Single Molecules PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Self Assembly Approach to Localization and Patterning of Optically Resolved Single Molecules PDF full book. Access full book title A Self Assembly Approach to Localization and Patterning of Optically Resolved Single Molecules by Randall Mark Stoltenberg. Download full books in PDF and EPUB format.

A Self Assembly Approach to Localization and Patterning of Optically Resolved Single Molecules

A Self Assembly Approach to Localization and Patterning of Optically Resolved Single Molecules PDF Author: Randall Mark Stoltenberg
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 249

Book Description
Directed assembly of single molecules is a central theme in nanotechnology. This body of work was inspired by a specific challenge involving ordered deposition of single DNAs on surfaces for massively parallel single molecule DNA sequencing via fluorescence microscopy. A potential 10-fold gain in data density is possible if single molecules can be forced into a regular array rather than randomly deposited. The dimensions of such an array are difficult to achieve with conventional lithography techniques. On one end, molecules must be separated by sufficient distance so their optical signatures do not overlap. This distance is on the order of hundreds of nanometers. On the other end, the attachment points for the molecules must have molecular dimensions. Bridging these two length scales is a formidable task. The ability to place nanometer scale objects with nanometer precision can been achieved through atomic force microscopy, scanning tunneling microscopy, optical tweezers, and ebeam lithography. All of these techniques, however, are serial in nature and hence do not serve the intended gain in data density. Another approach toward directed patterning of single molecules is through self-assembly. In this work, self-assembly of block copolymers is explored as a means to addressing the molecular and optical resolution length scales simultaneously. First, the challenge of molecular patterning for single molecule fluorescence microscopy is explored theoretically and the limits of this approach are defined. Block copolymers are introduced as a possible solution to generating the correct surface patterns for improved data density, and experimental results are compared to theoretical predictions. Second, the surface chemistry of these arrays is characterized, and I will show they can be selectively functionalized in preparation for directed assembly of DNAs. Third, these arrays are integrated into single molecule fluorescence imaging experiments to determine their potential for improved data density. What emerges from this work is not only a viable platform for increased single molecule fluorescence data density, but also a deeper understanding of the requirements for directed self-assembly of single molecules.

A Self Assembly Approach to Localization and Patterning of Optically Resolved Single Molecules

A Self Assembly Approach to Localization and Patterning of Optically Resolved Single Molecules PDF Author: Randall Mark Stoltenberg
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 249

Book Description
Directed assembly of single molecules is a central theme in nanotechnology. This body of work was inspired by a specific challenge involving ordered deposition of single DNAs on surfaces for massively parallel single molecule DNA sequencing via fluorescence microscopy. A potential 10-fold gain in data density is possible if single molecules can be forced into a regular array rather than randomly deposited. The dimensions of such an array are difficult to achieve with conventional lithography techniques. On one end, molecules must be separated by sufficient distance so their optical signatures do not overlap. This distance is on the order of hundreds of nanometers. On the other end, the attachment points for the molecules must have molecular dimensions. Bridging these two length scales is a formidable task. The ability to place nanometer scale objects with nanometer precision can been achieved through atomic force microscopy, scanning tunneling microscopy, optical tweezers, and ebeam lithography. All of these techniques, however, are serial in nature and hence do not serve the intended gain in data density. Another approach toward directed patterning of single molecules is through self-assembly. In this work, self-assembly of block copolymers is explored as a means to addressing the molecular and optical resolution length scales simultaneously. First, the challenge of molecular patterning for single molecule fluorescence microscopy is explored theoretically and the limits of this approach are defined. Block copolymers are introduced as a possible solution to generating the correct surface patterns for improved data density, and experimental results are compared to theoretical predictions. Second, the surface chemistry of these arrays is characterized, and I will show they can be selectively functionalized in preparation for directed assembly of DNAs. Third, these arrays are integrated into single molecule fluorescence imaging experiments to determine their potential for improved data density. What emerges from this work is not only a viable platform for increased single molecule fluorescence data density, but also a deeper understanding of the requirements for directed self-assembly of single molecules.

Single Molecule Tools, Part A: Fluorescence Based Approaches

Single Molecule Tools, Part A: Fluorescence Based Approaches PDF Author:
Publisher: Academic Press
ISBN: 008095927X
Category : Science
Languages : en
Pages : 559

Book Description
Single molecule tools have begun to revolutionize the molecular sciences, from biophysics to chemistry to cell biology. They hold the promise to be able to directly observe previously unseen molecular heterogeneities, quantitatively dissect complex reaction kinetics, ultimately miniaturize enzyme assays, image components of spatially distributed samples, probe the mechanical properties of single molecules in their native environment, and "just look at the thing" as anticipated by the visionary Richard Feynman already half a century ago. Single Molecule Tools, Part A: Fluorescence Based Approaches captures a snapshot of this vibrant, rapidly expanding field, presenting articles from pioneers in the field intended to guide both the newcomer and the expert through the intricacies of getting single molecule tools. - Includes time-tested core methods and new innovations applicable to any researcher employing single molecule tools - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide to developing protocols in a number of disciplines

Fluids, Colloids and Soft Materials

Fluids, Colloids and Soft Materials PDF Author: Alberto Fernandez-Nieves
Publisher: John Wiley & Sons
ISBN: 111806562X
Category : Technology & Engineering
Languages : en
Pages : 444

Book Description
This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.

Recent Advances in Nanofabrication Techniques and Applications

Recent Advances in Nanofabrication Techniques and Applications PDF Author: Bo Cui
Publisher: BoD – Books on Demand
ISBN: 953307602X
Category : Science
Languages : en
Pages : 630

Book Description
Nanotechnology has experienced a rapid growth in the past decade, largely owing to the rapid advances in nanofabrication techniques employed to fabricate nano-devices. Nanofabrication can be divided into two categories: "bottom up" approach using chemical synthesis or self assembly, and "top down" approach using nanolithography, thin film deposition and etching techniques. Both topics are covered, though with a focus on the second category. This book contains twenty nine chapters and aims to provide the fundamentals and recent advances of nanofabrication techniques, as well as its device applications. Most chapters focus on in-depth studies of a particular research field, and are thus targeted for researchers, though some chapters focus on the basics of lithographic techniques accessible for upper year undergraduate students. Divided into five parts, this book covers electron beam, focused ion beam, nanoimprint, deep and extreme UV, X-ray, scanning probe, interference, two-photon, and nanosphere lithography.

Cell Membrane Nanodomains

Cell Membrane Nanodomains PDF Author: Alessandra Cambi
Publisher: CRC Press
ISBN: 1482209896
Category : Medical
Languages : en
Pages : 514

Book Description
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel techniques reveals new concepts in biology. It assembles a collection of works where the integration of membrane biology and microscopy emphasizes the interdisciplinary nature of this exciting field. Beginning with a broad description of membrane organization, including seminal work on lipid partitioning in model systems and the roles of proteins in membrane organization, the book examines how lipids and membrane compartmentalization can regulate protein function and signal transduction. It then focuses on recent advances in imaging techniques and tools that foster further advances in our understanding of signaling nanoplatforms. The coverage includes several diffraction-limited imaging techniques that allow for measurements of protein distribution/clustering and membrane curvature in living cells, new fluorescent proteins, novel Laurdan analyses, and the toolbox of labeling possibilities with organic dyes. Since superresolution optical techniques have been crucial to advancing our understanding of cellular structure and protein behavior, the book concludes with a discussion of technologies that are enabling the visualization of lipids, proteins, and other molecular components at unprecedented spatiotemporal resolution. It also explains the ins and outs of the rapidly developing high- or superresolution microscopy field, including new methods and data analysis tools that exclusively pertain to these techniques. This integration of membrane biology and advanced imaging techniques emphasizes the interdisciplinary nature of this exciting field. The array of contributions from leading world experts makes this book a valuable tool for the visualization of signaling nanoplatforms by means of cutting-edge optical microscopy tools.

Spectroscopy and Dynamics of Single Molecules

Spectroscopy and Dynamics of Single Molecules PDF Author:
Publisher: Elsevier
ISBN: 0128164646
Category : Science
Languages : en
Pages : 404

Book Description
Spectroscopy and Dynamics of Single Molecules: Methods and Applications reviews the most recent developments in spectroscopic methods and applications. Spectroscopic techniques are the chief experimental methods for testing theoretical models and research in this area plays an important role in stimulating new theoretical developments in physical chemistry. This book provides an authoritative insight into the latest advances in the field, highlighting new techniques, current applications, and potential future developments An ideal reference for chemists and physicists alike, Spectroscopy and Dynamics of Single Molecules: Methods and Applications is a useful guide for all those working in the research, design, or application of spectroscopic tools and techniques across a wide range of fields. - Includes the latest research on ultrafast vibrational and electronic dynamics, nonlinear spectroscopies, and single-molecule methods - Makes the content accessible to researchers in chemistry, biophysics, and chemical physics through a rigorous multi-disciplinary approach - Provides content edited by a world-renowned chemist with more than 30 years of experience in research and instruction

Center for Nanoscale Science and Technology 2010 Biennial Report

Center for Nanoscale Science and Technology 2010 Biennial Report PDF Author:
Publisher: DIANE Publishing
ISBN: 1437985718
Category :
Languages : en
Pages : 88

Book Description


Structured Surfaces as Optical Metamaterials

Structured Surfaces as Optical Metamaterials PDF Author: Alexei A. Maradudin
Publisher: Cambridge University Press
ISBN: 1139497871
Category : Science
Languages : en
Pages : 459

Book Description
Optical metamaterials are an exciting new field in optical science. A rapidly developing class of these metamaterials are those that allow the manipulation of volume and surface electromagnetic waves in desirable ways by suitably structuring the surfaces they interact with. They have applications in a variety of fields, such as materials science, photovoltaic technology, imaging and lensing, beam shaping and lasing. Describing techniques and applications, this book is ideal for researchers and professionals working in metamaterials and plasmonics, as well as those just entering this exciting new field. It surveys different types of structured surfaces, their design and fabrication, their unusual optical properties, recent experimental observations and their applications. Each chapter is written by an expert in that area, giving the reader an up-to-date overview of the subject. Both the experimental and theoretical aspects of each topic are presented.

Israel Ion Channel and Transporters Meeting 2019

Israel Ion Channel and Transporters Meeting 2019 PDF Author: Moran Rubinstein
Publisher: Frontiers Media SA
ISBN: 2889710556
Category : Science
Languages : en
Pages : 144

Book Description


Far-Field Optical Nanoscopy

Far-Field Optical Nanoscopy PDF Author: Philip Tinnefeld
Publisher: Springer
ISBN: 3662455471
Category : Science
Languages : en
Pages : 340

Book Description
This book describes developments in the field of super-resolution fluorescence microscopy or nanoscopy. In 11 chapters, distinguished scientists and leaders in their respective fields describe different nanoscopy approaches, various labeling technologies, and concrete applications. The topics covered include the principles and applications of the most popular nanoscopy techniques STED and (f)PALM/STORM, along with advances brought about by fluorescent proteins and organic dyes optimized for fluorescence nanoscopy. Furthermore, the photophysics of fluorescent labels is addressed, specifically for improving their photoswitching capabilities. Important applications are also discussed, such as the tracking and counting of molecules to determine acting forces in cells, and quantitative cellular imaging, respectively, as well as the mapping of chemical reaction centers at the nano-scale. The 2014 Chemistry Nobel Prize® was awarded for the ground-breaking developments of super-resolved fluorescence microscopy. In this book, which was co-edited by one of the prize winners, readers will find the most recent developments in this field.