A Review of U.S. High Explosive Pulsed Power Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Review of U.S. High Explosive Pulsed Power Systems PDF full book. Access full book title A Review of U.S. High Explosive Pulsed Power Systems by . Download full books in PDF and EPUB format.

A Review of U.S. High Explosive Pulsed Power Systems

A Review of U.S. High Explosive Pulsed Power Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
High explosive pulsed power (HEPP) is a specialized subset among pulsed power endeavors which takes advantage of the very high energy density available in both magnetic fields and high explosives (HE). To introduce basic concepts, the author divides HEPP components into generators (magnetic field (B) or current (I)) and switches. Magnetic field and current generators start with magnetic field trapped in a conducting volume. Magnetic flux can be expressed as either LI or BA, where L and A (inductance and cross sectional area) are both geometry dependent circuit properties. In a purely inductive circuit, flux is conserved, so L1I1=L2I2 or B1A1=B2A2. In the technique, HE is used to propel circuit elements that perform work against the trapped magnetic field as L or A is reduced, yielding increased I or B. Throughout this paper, the author uses the term flux compression generator (FCG) for these devices, although the reader will find a variety of acronyms in the literature. A good primer on FCG's is by Fowler et al. HE is also used to provide opening and closing switches for HEPP circuits. Closing switches do not require great sophistication, and they don't discuss them here. Opening switches typically use the energy of HE to rapidly reduce the current carrying cross section of a particular circuit element, and often require sophisticated detonation systems to match the contour of that element (e. g. cylindrical). This may either cause a direct increase in resistance or create the circumstance in which the remainder of the material fuses due to ohmic effects. Many good papers on explosive-driven opening switches can be found in previous Megagauss conference proceedings, and these are also a good source for information regarding HEPP endeavors outside the US, which is beyond the scope of this paper.

A Review of U.S. High Explosive Pulsed Power Systems

A Review of U.S. High Explosive Pulsed Power Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
High explosive pulsed power (HEPP) is a specialized subset among pulsed power endeavors which takes advantage of the very high energy density available in both magnetic fields and high explosives (HE). To introduce basic concepts, the author divides HEPP components into generators (magnetic field (B) or current (I)) and switches. Magnetic field and current generators start with magnetic field trapped in a conducting volume. Magnetic flux can be expressed as either LI or BA, where L and A (inductance and cross sectional area) are both geometry dependent circuit properties. In a purely inductive circuit, flux is conserved, so L1I1=L2I2 or B1A1=B2A2. In the technique, HE is used to propel circuit elements that perform work against the trapped magnetic field as L or A is reduced, yielding increased I or B. Throughout this paper, the author uses the term flux compression generator (FCG) for these devices, although the reader will find a variety of acronyms in the literature. A good primer on FCG's is by Fowler et al. HE is also used to provide opening and closing switches for HEPP circuits. Closing switches do not require great sophistication, and they don't discuss them here. Opening switches typically use the energy of HE to rapidly reduce the current carrying cross section of a particular circuit element, and often require sophisticated detonation systems to match the contour of that element (e. g. cylindrical). This may either cause a direct increase in resistance or create the circumstance in which the remainder of the material fuses due to ohmic effects. Many good papers on explosive-driven opening switches can be found in previous Megagauss conference proceedings, and these are also a good source for information regarding HEPP endeavors outside the US, which is beyond the scope of this paper.

Megagauss Magnetic Field Generation, Its Application to Science and Ultra-high Pulsed-power Technology

Megagauss Magnetic Field Generation, Its Application to Science and Ultra-high Pulsed-power Technology PDF Author: Hans J. Schneider-Muntau
Publisher: World Scientific
ISBN: 9812702512
Category : Science
Languages : en
Pages : 749

Book Description
The generation of megagauss fields for science and technology is an exciting area at the extremes of parameter space, involving the application and controlled handling of extremely high power and energy densities in small volumes and on short time scales. New physical phenomena, technological challenges, and the selection and development of materials, together create a unique potential and synergy resulting in fascinating discoveries and achievements. This book is a collection of the contributions of an international conference, which assembled the leading scientists and engineers worldwide working on the generation and use of the strongest magnetic fields possible. Other research activities include generators that employ explosives to create ultra-high pulsed power for different applications, such as megavolt or radiation sources. Additional topics are the generation of plasmas and magnetized plasmas for fusion, imploding liners, rail guns, etc.

Explosively Driven Pulsed Power

Explosively Driven Pulsed Power PDF Author: Andreas A. Neuber
Publisher: Springer Science & Business Media
ISBN: 354028673X
Category : Technology & Engineering
Languages : en
Pages : 282

Book Description
While the basic operating principles of Helical Magnetic Flux Compression Generators are easy to understand, the details of their construction and performance limits have been described only in government reports, many of them classified. Conferences in the field of flux compression are also dominated by contributions from government (US and foreign) laboratories. And the government-sponsored research has usually been concerned with very large generators with explosive charges that require elaborate facilities and safety arrangements. This book emphasizes research into small generators (less than 500 grams of high explosives) and explains in detail the physical fundamentals, construction details, and parameter-variation effects related to them.

Design of High Explosive Pulsed Power Systems for 20 MB Isentropic Compression Experiments

Design of High Explosive Pulsed Power Systems for 20 MB Isentropic Compression Experiments PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Review of the Procyon Explosive Pulsed Power System

Review of the Procyon Explosive Pulsed Power System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 39

Book Description
The Procyon explosive pulsed power system is designed for powering plasma z-pinch experiments. It begins with a helical explosive-driven magnetic flux compression generator (MCG) for amplifying seed current from a capacitor bank into a storage inductor. One conductor element of the storage inductor is an explosively formed fuse (EFF) opening switch tailored to divert current to a plasma flow switch (PFS) in less than 3 [mu]s. The PFS, in turn, delivers current to a z-pinch load. Experiments to date have concentrated on the explosive pulsed power components and PFS. This paper focuses on the results of a recent full energy MCG/EFF/PFS test.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 872

Book Description


Explosive Pulsed Power

Explosive Pulsed Power PDF Author: Larry L. Altgilbers
Publisher: World Scientific
ISBN: 1848163223
Category : Technology & Engineering
Languages : en
Pages : 597

Book Description
Explosive pulsed power generators are devices that either convert the chemical energy stored in explosives into electrical energy or use the shock waves generated by explosives to release energy stored in ferroelectric and ferromagnetic materials. The objective of this book is to acquaint the reader with the principles of operation of explosive generators and to provide details on how to design, build, and test three types of generators: flux compression, ferroelectric, and ferromagnetic generators, which are the most developed and the most near term for practical applications. Containing a considerable amount of new experimental data that has been collected by the authors, this is the first book that treats all three types of explosive pulsed power generators. In addition, there is a brief introduction to a fourth type ix explosive generator called a moving magnet generator. As practical applications for these generators evolve, students, scientists, and engineers will have access to the results of a considerable body of experience gained by almost 10 years of intense research and development by the authors.

ERDA Energy Research Abstracts

ERDA Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1028

Book Description


Capabilities for High Explosive Pulsed Power Research at Los Alamos National Laboratory

Capabilities for High Explosive Pulsed Power Research at Los Alamos National Laboratory PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

Explosive Pulsed Power System for New Radiation Sources

Explosive Pulsed Power System for New Radiation Sources PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
High explosive pulsed power (HEPP) systems are capable of accessing very high energy densities and can reach conditions that are not possible with capacitor bank systems. The Procyon system was developed and used for experiments over a period of six years, and is exemplary of the capabilities of HEPP systems for state-of-the-art research. In this paper we will summarize some of the more interesting aspects of the work done in the past but will suggest ideas toward applications for future research. One of the main, unique features of HEPP systems is that they integrate easily to a particular physics experiment and the power flow can be optimized for a specific test. Magnetic flux compression generators have been an ideal power source for both high current plasma physics and hydrodynamic experimental loads. These experiments have contributed greatly to the understanding of high temperature and density plasmas and more recently to the understanding of instability growth in thick ((almost equal to)1 mm) imploding metal cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load. The resulting Lorenz force compresses the load to produce hydrodynamic motion and/or high temperature, high density plasma. In the plasma physics experiments, plasma thermalizes on axis and a black body distribution of x-rays is produced. To get better access to the radiation pulse, the load electrode geometry was modified. For example, by shaping the plasma implosion glide planes, a mass depletion region was formed along one electrode at pinch time which generated a very large voltage drop across a 1-2 mm segment of the pinch, and also produced a high energy ion beam on axis. These results were predicted by magneto-hydro-dynamic (MHD) codes and verified with framing camera and x-ray, pinhole, camera pictures. We have not previously published these features but will take another look and propose possible scenarios for studying and generating high intensity ion beams. The conditions generated in the implosion load region may be ideal for generating K and L-shell radiation via ion-atom collisions. In recent years, and in a previous conference, the simulation community has shown interest for Ar K-shell radiation and other soft x-ray sources. We will speculate on ways to use this system to generate a high fluence pulse of Ar K-shell radiation, and also to use the high intensity ion beam to study the mechanisms involved in the ion-atom collisions process. These processes can be used to enhance x-ray radiation from a variety of elements.