Author: Kathleen Subrahmaniam
Publisher: CRC Press
ISBN: 1482293293
Category : Mathematics
Languages : en
Pages : 337
Book Description
Somewhat revised/expanded new edition of a problem-oriented introductory undergraduate text, the first edition of which appeared about a decade ago. The author writes with courteous clarity, and imposes only modest demands upon the mathematical skills of her readers. Problems at the end of each of t
A Primer in Probability
Author: Kathleen Subrahmaniam
Publisher: CRC Press
ISBN: 1482293293
Category : Mathematics
Languages : en
Pages : 337
Book Description
Somewhat revised/expanded new edition of a problem-oriented introductory undergraduate text, the first edition of which appeared about a decade ago. The author writes with courteous clarity, and imposes only modest demands upon the mathematical skills of her readers. Problems at the end of each of t
Publisher: CRC Press
ISBN: 1482293293
Category : Mathematics
Languages : en
Pages : 337
Book Description
Somewhat revised/expanded new edition of a problem-oriented introductory undergraduate text, the first edition of which appeared about a decade ago. The author writes with courteous clarity, and imposes only modest demands upon the mathematical skills of her readers. Problems at the end of each of t
A Primer in Probability, Second Edition
Author: Kathleen Subrahmaniam
Publisher: CRC Press
ISBN: 9780849306617
Category : Mathematics
Languages : en
Pages : 338
Book Description
Somewhat revised/expanded new edition of a problem-oriented introductory undergraduate text, the first edition of which appeared about a decade ago. The author writes with courteous clarity, and imposes only modest demands upon the mathematical skills of her readers. Problems at the end of each of t
Publisher: CRC Press
ISBN: 9780849306617
Category : Mathematics
Languages : en
Pages : 338
Book Description
Somewhat revised/expanded new edition of a problem-oriented introductory undergraduate text, the first edition of which appeared about a decade ago. The author writes with courteous clarity, and imposes only modest demands upon the mathematical skills of her readers. Problems at the end of each of t
A Primer of Probability Logic
Author: Ernest Wilcox Adams
Publisher: Stanford Univ Center for the Study
ISBN: 9781575860664
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book is meant to be a primer, that is an introduction, to probability logic, a subject that appears to be in its infancy. Probability logic is a subject envisioned by Hans Reichenbach and largely created by Adams. It treats conditionals as bearers of conditional probabilities and discusses an appropriate sense of validity for arguments such conditionals, as well as ordinary statements as premises. This is a clear well written text on the subject of probability logic, suitable for advanced undergraduates or graduates, but also of interest to professional philosophers. There are well thought out exercises, and a number of advanced topics treated in appendices, while some are brought up in exercises and some are alluded to only in footnotes. By this means it is hoped that the reader will at least be made aware of most of the important ramifications of the subject and its tie-ins with current research, and will have some indications concerning recent and relevant literature.
Publisher: Stanford Univ Center for the Study
ISBN: 9781575860664
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book is meant to be a primer, that is an introduction, to probability logic, a subject that appears to be in its infancy. Probability logic is a subject envisioned by Hans Reichenbach and largely created by Adams. It treats conditionals as bearers of conditional probabilities and discusses an appropriate sense of validity for arguments such conditionals, as well as ordinary statements as premises. This is a clear well written text on the subject of probability logic, suitable for advanced undergraduates or graduates, but also of interest to professional philosophers. There are well thought out exercises, and a number of advanced topics treated in appendices, while some are brought up in exercises and some are alluded to only in footnotes. By this means it is hoped that the reader will at least be made aware of most of the important ramifications of the subject and its tie-ins with current research, and will have some indications concerning recent and relevant literature.
Measure, Integration and a Primer on Probability Theory
Author: Stefano Gentili
Publisher: Springer Nature
ISBN: 3030549402
Category : Mathematics
Languages : en
Pages : 458
Book Description
The text contains detailed and complete proofs and includes instructive historical introductions to key chapters. These serve to illustrate the hurdles faced by the scholars that developed the theory, and allow the novice to approach the subject from a wider angle, thus appreciating the human side of major figures in Mathematics. The style in which topics are addressed, albeit informal, always maintains a rigorous character. The attention placed in the careful layout of the logical steps of proofs, the abundant examples and the supplementary remarks disseminated throughout all contribute to render the reading pleasant and facilitate the learning process. The exposition is particularly suitable for students of Mathematics, Physics, Engineering and Statistics, besides providing the foundation essential for the study of Probability Theory and many branches of Applied Mathematics, including the Analysis of Financial Markets and other areas of Financial Engineering.
Publisher: Springer Nature
ISBN: 3030549402
Category : Mathematics
Languages : en
Pages : 458
Book Description
The text contains detailed and complete proofs and includes instructive historical introductions to key chapters. These serve to illustrate the hurdles faced by the scholars that developed the theory, and allow the novice to approach the subject from a wider angle, thus appreciating the human side of major figures in Mathematics. The style in which topics are addressed, albeit informal, always maintains a rigorous character. The attention placed in the careful layout of the logical steps of proofs, the abundant examples and the supplementary remarks disseminated throughout all contribute to render the reading pleasant and facilitate the learning process. The exposition is particularly suitable for students of Mathematics, Physics, Engineering and Statistics, besides providing the foundation essential for the study of Probability Theory and many branches of Applied Mathematics, including the Analysis of Financial Markets and other areas of Financial Engineering.
Basic Probability Theory
Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 0486466280
Category : Mathematics
Languages : en
Pages : 354
Book Description
This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
Publisher: Courier Corporation
ISBN: 0486466280
Category : Mathematics
Languages : en
Pages : 354
Book Description
This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
A Primer on Statistical Distributions
Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
ISBN: 0471722219
Category : Mathematics
Languages : en
Pages : 322
Book Description
Designed as an introduction to statistical distribution theory. * Includes a first chapter on basic notations and definitions that are essential to working with distributions. * Remaining chapters are divided into three parts: Discrete Distributions, Continuous Distributions, and Multivariate Distributions. * Exercises are incorporated throughout the text in order to enhance understanding of materials just taught.
Publisher: John Wiley & Sons
ISBN: 0471722219
Category : Mathematics
Languages : en
Pages : 322
Book Description
Designed as an introduction to statistical distribution theory. * Includes a first chapter on basic notations and definitions that are essential to working with distributions. * Remaining chapters are divided into three parts: Discrete Distributions, Continuous Distributions, and Multivariate Distributions. * Exercises are incorporated throughout the text in order to enhance understanding of materials just taught.
Classical Statistical Mechanics with Nested Sampling
Author: Robert John Nicholas Baldock
Publisher: Springer
ISBN: 3319667696
Category : Science
Languages : en
Pages : 146
Book Description
This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure–volume–temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure–temperature phase diagrams of aluminium and a model binary alloy.
Publisher: Springer
ISBN: 3319667696
Category : Science
Languages : en
Pages : 146
Book Description
This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure–volume–temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure–temperature phase diagrams of aluminium and a model binary alloy.
A Mathematical Primer for Social Statistics
Author: John Fox
Publisher: SAGE
ISBN: 1412960800
Category : Social Science
Languages : en
Pages : 185
Book Description
The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods
Publisher: SAGE
ISBN: 1412960800
Category : Social Science
Languages : en
Pages : 185
Book Description
The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods
Causal Inference in Statistics
Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
A Primer for Mathematics Competitions
Author: Alexander Zawaira
Publisher: OUP Oxford
ISBN: 0191561703
Category : Mathematics
Languages : en
Pages : 368
Book Description
The importance of mathematics competitions has been widely recognised for three reasons: they help to develop imaginative capacity and thinking skills whose value far transcends mathematics; they constitute the most effective way of discovering and nurturing mathematical talent; and they provide a means to combat the prevalent false image of mathematics held by high school students, as either a fearsomely difficult or a dull and uncreative subject. This book provides a comprehensive training resource for competitions from local and provincial to national Olympiad level, containing hundreds of diagrams, and graced by many light-hearted cartoons. It features a large collection of what mathematicians call "beautiful" problems - non-routine, provocative, fascinating, and challenging problems, often with elegant solutions. It features careful, systematic exposition of a selection of the most important topics encountered in mathematics competitions, assuming little prior knowledge. Geometry, trigonometry, mathematical induction, inequalities, Diophantine equations, number theory, sequences and series, the binomial theorem, and combinatorics - are all developed in a gentle but lively manner, liberally illustrated with examples, and consistently motivated by attractive "appetiser" problems, whose solution appears after the relevant theory has been expounded. Each chapter is presented as a "toolchest" of instruments designed for cracking the problems collected at the end of the chapter. Other topics, such as algebra, co-ordinate geometry, functional equations and probability, are introduced and elucidated in the posing and solving of the large collection of miscellaneous problems in the final toolchest. An unusual feature of this book is the attention paid throughout to the history of mathematics - the origins of the ideas, the terminology and some of the problems, and the celebration of mathematics as a multicultural, cooperative human achievement. As a bonus the aspiring "mathlete" may encounter, in the most enjoyable way possible, many of the topics that form the core of the standard school curriculum.
Publisher: OUP Oxford
ISBN: 0191561703
Category : Mathematics
Languages : en
Pages : 368
Book Description
The importance of mathematics competitions has been widely recognised for three reasons: they help to develop imaginative capacity and thinking skills whose value far transcends mathematics; they constitute the most effective way of discovering and nurturing mathematical talent; and they provide a means to combat the prevalent false image of mathematics held by high school students, as either a fearsomely difficult or a dull and uncreative subject. This book provides a comprehensive training resource for competitions from local and provincial to national Olympiad level, containing hundreds of diagrams, and graced by many light-hearted cartoons. It features a large collection of what mathematicians call "beautiful" problems - non-routine, provocative, fascinating, and challenging problems, often with elegant solutions. It features careful, systematic exposition of a selection of the most important topics encountered in mathematics competitions, assuming little prior knowledge. Geometry, trigonometry, mathematical induction, inequalities, Diophantine equations, number theory, sequences and series, the binomial theorem, and combinatorics - are all developed in a gentle but lively manner, liberally illustrated with examples, and consistently motivated by attractive "appetiser" problems, whose solution appears after the relevant theory has been expounded. Each chapter is presented as a "toolchest" of instruments designed for cracking the problems collected at the end of the chapter. Other topics, such as algebra, co-ordinate geometry, functional equations and probability, are introduced and elucidated in the posing and solving of the large collection of miscellaneous problems in the final toolchest. An unusual feature of this book is the attention paid throughout to the history of mathematics - the origins of the ideas, the terminology and some of the problems, and the celebration of mathematics as a multicultural, cooperative human achievement. As a bonus the aspiring "mathlete" may encounter, in the most enjoyable way possible, many of the topics that form the core of the standard school curriculum.