Author: Marcelo Samuel Berman
Publisher:
ISBN:
Category : Black holes (Astronomy)
Languages : en
Pages : 262
Book Description
A Primer in Black Holes, Mach's Principle and Gravitational Energy
Author: Marcelo Samuel Berman
Publisher:
ISBN:
Category : Black holes (Astronomy)
Languages : en
Pages : 262
Book Description
Publisher:
ISBN:
Category : Black holes (Astronomy)
Languages : en
Pages : 262
Book Description
Introduction to General Relativistic and Scalar-tensor Cosmologies
Author: Marcelo Samuel Berman
Publisher: Nova Publishers
ISBN: 9781600210136
Category : Mathematics
Languages : en
Pages : 284
Book Description
This book offers an introduction to General Relativity and its mathematical tools, together with an introduction to relativistic and scalar-tensor cosmologies. Part I deals with Tensor Calculus. Part II introduces General Relativity Theory, while Part III deals with Relativistic Cosmology. In Part IV we work Scalar-Tensor theories, concentrating in Cosmological Models. In the last chapters, the cosmological models presented, become more and more sophisticated, including some new cases, never published elsewhere, in which all fundamental "constants" are made to vary, with the age of the Universe, namely, the gravitational, the cosmological, the coupling Brans-Dicke "constants", the speed of light, Planck's "fine -structure "constant" alpha" etc. This is a mathematical cosmology textbook that may lead undergraduates, and graduate students, to one of the frontiers of research, while keeping the prerequisites to a minimum, because most of the theory in the book requires only prior knowledge of Calculus and a University Physics course.
Publisher: Nova Publishers
ISBN: 9781600210136
Category : Mathematics
Languages : en
Pages : 284
Book Description
This book offers an introduction to General Relativity and its mathematical tools, together with an introduction to relativistic and scalar-tensor cosmologies. Part I deals with Tensor Calculus. Part II introduces General Relativity Theory, while Part III deals with Relativistic Cosmology. In Part IV we work Scalar-Tensor theories, concentrating in Cosmological Models. In the last chapters, the cosmological models presented, become more and more sophisticated, including some new cases, never published elsewhere, in which all fundamental "constants" are made to vary, with the age of the Universe, namely, the gravitational, the cosmological, the coupling Brans-Dicke "constants", the speed of light, Planck's "fine -structure "constant" alpha" etc. This is a mathematical cosmology textbook that may lead undergraduates, and graduate students, to one of the frontiers of research, while keeping the prerequisites to a minimum, because most of the theory in the book requires only prior knowledge of Calculus and a University Physics course.
Introduction to General Relativity and the Cosmological Constant Problem
Author: Marcelo Samuel Berman
Publisher: Nova Publishers
ISBN: 9781594547171
Category : Science
Languages : en
Pages : 232
Book Description
This book is an introductory text in General Relativity, while also focusing some solutions to the cosmological constant problem, which consists in an amazing 100 orders of magnitude discrepancy between the value of this constant in the present Universe, and its estimated value in the very early epoch. The author suggests that the constant is in fact, a time-varying function of the age of the Universe. The book offers a wealth of cosmological models, treats up to date findings, like the verification of the Lense-Thirring effect in the year 2004, and the recently published research by Cooperstock and Tieu (2005) suggesting that "dark" matter is not a necessary concept in order to explain the rotational velocities of stars around galaxies' nuclei. This is a mathematical cosmology textbook that may lead undergraduates, and graduate students to one of the frontiers of research, while keeping the prerequisites to a minimum, because most of the theory in the book requires only prior knowledge of Calculus and a University Physics course.
Publisher: Nova Publishers
ISBN: 9781594547171
Category : Science
Languages : en
Pages : 232
Book Description
This book is an introductory text in General Relativity, while also focusing some solutions to the cosmological constant problem, which consists in an amazing 100 orders of magnitude discrepancy between the value of this constant in the present Universe, and its estimated value in the very early epoch. The author suggests that the constant is in fact, a time-varying function of the age of the Universe. The book offers a wealth of cosmological models, treats up to date findings, like the verification of the Lense-Thirring effect in the year 2004, and the recently published research by Cooperstock and Tieu (2005) suggesting that "dark" matter is not a necessary concept in order to explain the rotational velocities of stars around galaxies' nuclei. This is a mathematical cosmology textbook that may lead undergraduates, and graduate students to one of the frontiers of research, while keeping the prerequisites to a minimum, because most of the theory in the book requires only prior knowledge of Calculus and a University Physics course.
General Relativity
Author: Michael J W Hall
Publisher: Morgan & Claypool Publishers
ISBN: 1681748843
Category : Science
Languages : en
Pages : 159
Book Description
This book is based on a set of 18 class-tested lectures delivered to fourth-year physics undergraduates at Griffith University in Brisbane, and the book presents new discoveries by the Nobel-prize winning LIGO collaboration. The author begins with a review of special relativity and tensors and then develops the basic elements of general relativity (a beautiful theory that unifies special relativity and gravitation via geometry) with applications to the gravitational deflection of light, global positioning systems, black holes, gravitational waves, and cosmology. The book provides readers with a solid understanding of the underlying physical concepts; an ability to appreciate and in many cases derive important applications of the theory; and a solid grounding for those wishing to pursue their studies further. General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology also connects general relativity with broader topics. There is no doubt that general relativity is an active and exciting field of physics, and this book successfully transmits that excitement to readers.
Publisher: Morgan & Claypool Publishers
ISBN: 1681748843
Category : Science
Languages : en
Pages : 159
Book Description
This book is based on a set of 18 class-tested lectures delivered to fourth-year physics undergraduates at Griffith University in Brisbane, and the book presents new discoveries by the Nobel-prize winning LIGO collaboration. The author begins with a review of special relativity and tensors and then develops the basic elements of general relativity (a beautiful theory that unifies special relativity and gravitation via geometry) with applications to the gravitational deflection of light, global positioning systems, black holes, gravitational waves, and cosmology. The book provides readers with a solid understanding of the underlying physical concepts; an ability to appreciate and in many cases derive important applications of the theory; and a solid grounding for those wishing to pursue their studies further. General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology also connects general relativity with broader topics. There is no doubt that general relativity is an active and exciting field of physics, and this book successfully transmits that excitement to readers.
Artificial Black Holes
Author: Mario Novello
Publisher: World Scientific
ISBN: 9814489603
Category : Science
Languages : en
Pages : 415
Book Description
Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various “analog models”. These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters — written by experts in general relativity, particle physics, and condensed matter physics — that explore various aspects of this two-way traffic.
Publisher: World Scientific
ISBN: 9814489603
Category : Science
Languages : en
Pages : 415
Book Description
Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various “analog models”. These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters — written by experts in general relativity, particle physics, and condensed matter physics — that explore various aspects of this two-way traffic.
Mach's Principle and the Origin of Inertia
Author: Mendel Sachs
Publisher: Apeiron
ISBN: 9780973291100
Category : General relativity (Physics)
Languages : en
Pages : 0
Book Description
Publisher: Apeiron
ISBN: 9780973291100
Category : General relativity (Physics)
Languages : en
Pages : 0
Book Description
Revista Mexicana de Astronomía Y Astrofísica
The Expanding Universe
Author: William D. Heacox
Publisher: Cambridge University Press
ISBN: 1316453790
Category : Science
Languages : en
Pages : 293
Book Description
Cosmology - the science of the Universe at large - has experienced a renaissance in the decades bracketing the turn of the twenty-first century. Exploring our emerging understanding of cosmology, this text takes two complementary points of view: the physical principles underlying theories of cosmology, and the observable consequences of models of Universal expansion. The book develops cosmological models based on fundamental physical principles, with mathematics limited to the minimum necessary to keep the material accessible for students of physics and astronomy at the advanced undergraduate level. A substantial review of general relativity leading up to the Einstein field equations is included, with derivations of explicit formulations connecting observable features of the Universe to models of its expansion. Self-contained and up to date in respect of modern observations, the text provides a solid theoretical grounding in modern cosmology while preparing readers for the changes that will inevitably come from future observations.
Publisher: Cambridge University Press
ISBN: 1316453790
Category : Science
Languages : en
Pages : 293
Book Description
Cosmology - the science of the Universe at large - has experienced a renaissance in the decades bracketing the turn of the twenty-first century. Exploring our emerging understanding of cosmology, this text takes two complementary points of view: the physical principles underlying theories of cosmology, and the observable consequences of models of Universal expansion. The book develops cosmological models based on fundamental physical principles, with mathematics limited to the minimum necessary to keep the material accessible for students of physics and astronomy at the advanced undergraduate level. A substantial review of general relativity leading up to the Einstein field equations is included, with derivations of explicit formulations connecting observable features of the Universe to models of its expansion. Self-contained and up to date in respect of modern observations, the text provides a solid theoretical grounding in modern cosmology while preparing readers for the changes that will inevitably come from future observations.
General Relativity and its Applications
Author: Valeria Ferrari
Publisher: CRC Press
ISBN: 0429957807
Category : Science
Languages : en
Pages : 494
Book Description
• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. • Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. • Fully up-to-date, containing the latest developments and discoveries in the field.
Publisher: CRC Press
ISBN: 0429957807
Category : Science
Languages : en
Pages : 494
Book Description
• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. • Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. • Fully up-to-date, containing the latest developments and discoveries in the field.
Epistemology of Experimental Gravity - Scientific Rationality
Author: Nicolae Sfetcu
Publisher: MultiMedia Publishing
ISBN: 6060333214
Category : Science
Languages : en
Pages : 216
Book Description
The evolution of gravitational tests from an epistemological perspective framed in the concept of rational reconstruction of Imre Lakatos, based on his methodology of research programmes. Unlike other works on the same subject, the evaluated period is very extensive, starting with Newton's natural philosophy and up to the quantum gravity theories of today. In order to explain in a more rational way the complex evolution of the gravity concept of the last century, I propose a natural extension of the methodology of the research programmes of Lakatos that I then use during the paper. I believe that this approach offers a new perspective on how evolved over time the concept of gravity and the methods of testing each theory of gravity, through observations and experiments. I argue, based on the methodology of the research programmes and the studies of scientists and philosophers, that the current theories of quantum gravity are degenerative, due to the lack of experimental evidence over a long period of time and of self-immunization against the possibility of falsification. Moreover, a methodological current is being developed that assigns a secondary, unimportant role to verification through observations and/or experiments. For this reason, it will not be possible to have a complete theory of quantum gravity in its current form, which to include to the limit the general relativity, since physical theories have always been adjusted, during their evolution, based on observational or experimental tests, and verified by the predictions made. Also, contrary to a widespread opinion and current active programs regarding the unification of all the fundamental forces of physics in a single final theory, based on string theory, I argue that this unification is generally unlikely, and it is not possible anyway for a unification to be developed based on current theories of quantum gravity, including string theory. In addition, I support the views of some scientists and philosophers that currently too much resources are being consumed on the idea of developing quantum gravity theories, and in particular string theory, to include general relativity and to unify gravity with other forces, as long as science does not impose such research programs. CONTENTS: Introduction Gravity Gravitational tests Methodology of Lakatos - Scientific rationality The natural extension of the Lakatos methodology Bifurcated programs Unifying programs 1. Newtonian gravity 1.1 Heuristics of Newtonian gravity 1.2 Proliferation of post-Newtonian theories 1.3 Tests of post-Newtonian theories 1.3.1 Newton's proposed tests 1.3.2 Tests of post-Newtonian theories 1.4 Newtonian gravity anomalies 1.5 Saturation point in Newtonian gravity 2. General relativity 2.1 Heuristics of the general relativity 2.2 Proliferation of post-Einsteinian gravitational theories 2.3 Post-Newtonian parameterized formalism (PPN) 2.4 Tests of general relativity and post-Einsteinian theories 2.4.1 Tests proposed by Einstein 2.4.2 Tests of post-Einsteinian theories 2.4.3 Classic tests 2.4.3.1 Precision of Mercury's perihelion 2.4.3.2 Light deflection 2.4.3.3 Gravitational redshift 2.4.4 Modern tests 2.4.4.1 Shapiro Delay 2.4.4.2 Gravitational dilation of time 2.4.4.3 Frame dragging and geodetic effect 2.4.4.4 Testing of the principle of equivalence 2.4.4.5 Solar system tests 2.4.5 Strong field gravitational tests 2.4.5.1 Gravitational lenses 2.4.5.2 Gravitational waves 2.4.5.3 Synchronization binary pulsars 2.4.5.4 Extreme environments 2.4.6 Cosmological tests 2.4.6.1 The expanding universe 2.4.6.2 Cosmological observations 2.4.6.3 Monitoring of weak gravitational lenses 2.5 Anomalies of general relativity 2.6 The saturation point of general relativity 3. Quantum gravity 3.1 Heuristics of quantum gravity 3.2 The tests of quantum gravity 3.3 Canonical quantum gravity 3.3.1 Tests proposed for the CQG 3.3.2. Loop quantum gravity 3.4 String theory 3.4.1 Heuristics of string theory 3.4.2. Anomalies of string theory 3.5 Other theories of quantum gravity 3.6 Unification (The Final Theory) 4. Cosmology Conclusions Notes Bibliography DOI: 10.13140/RG.2.2.35350.70724
Publisher: MultiMedia Publishing
ISBN: 6060333214
Category : Science
Languages : en
Pages : 216
Book Description
The evolution of gravitational tests from an epistemological perspective framed in the concept of rational reconstruction of Imre Lakatos, based on his methodology of research programmes. Unlike other works on the same subject, the evaluated period is very extensive, starting with Newton's natural philosophy and up to the quantum gravity theories of today. In order to explain in a more rational way the complex evolution of the gravity concept of the last century, I propose a natural extension of the methodology of the research programmes of Lakatos that I then use during the paper. I believe that this approach offers a new perspective on how evolved over time the concept of gravity and the methods of testing each theory of gravity, through observations and experiments. I argue, based on the methodology of the research programmes and the studies of scientists and philosophers, that the current theories of quantum gravity are degenerative, due to the lack of experimental evidence over a long period of time and of self-immunization against the possibility of falsification. Moreover, a methodological current is being developed that assigns a secondary, unimportant role to verification through observations and/or experiments. For this reason, it will not be possible to have a complete theory of quantum gravity in its current form, which to include to the limit the general relativity, since physical theories have always been adjusted, during their evolution, based on observational or experimental tests, and verified by the predictions made. Also, contrary to a widespread opinion and current active programs regarding the unification of all the fundamental forces of physics in a single final theory, based on string theory, I argue that this unification is generally unlikely, and it is not possible anyway for a unification to be developed based on current theories of quantum gravity, including string theory. In addition, I support the views of some scientists and philosophers that currently too much resources are being consumed on the idea of developing quantum gravity theories, and in particular string theory, to include general relativity and to unify gravity with other forces, as long as science does not impose such research programs. CONTENTS: Introduction Gravity Gravitational tests Methodology of Lakatos - Scientific rationality The natural extension of the Lakatos methodology Bifurcated programs Unifying programs 1. Newtonian gravity 1.1 Heuristics of Newtonian gravity 1.2 Proliferation of post-Newtonian theories 1.3 Tests of post-Newtonian theories 1.3.1 Newton's proposed tests 1.3.2 Tests of post-Newtonian theories 1.4 Newtonian gravity anomalies 1.5 Saturation point in Newtonian gravity 2. General relativity 2.1 Heuristics of the general relativity 2.2 Proliferation of post-Einsteinian gravitational theories 2.3 Post-Newtonian parameterized formalism (PPN) 2.4 Tests of general relativity and post-Einsteinian theories 2.4.1 Tests proposed by Einstein 2.4.2 Tests of post-Einsteinian theories 2.4.3 Classic tests 2.4.3.1 Precision of Mercury's perihelion 2.4.3.2 Light deflection 2.4.3.3 Gravitational redshift 2.4.4 Modern tests 2.4.4.1 Shapiro Delay 2.4.4.2 Gravitational dilation of time 2.4.4.3 Frame dragging and geodetic effect 2.4.4.4 Testing of the principle of equivalence 2.4.4.5 Solar system tests 2.4.5 Strong field gravitational tests 2.4.5.1 Gravitational lenses 2.4.5.2 Gravitational waves 2.4.5.3 Synchronization binary pulsars 2.4.5.4 Extreme environments 2.4.6 Cosmological tests 2.4.6.1 The expanding universe 2.4.6.2 Cosmological observations 2.4.6.3 Monitoring of weak gravitational lenses 2.5 Anomalies of general relativity 2.6 The saturation point of general relativity 3. Quantum gravity 3.1 Heuristics of quantum gravity 3.2 The tests of quantum gravity 3.3 Canonical quantum gravity 3.3.1 Tests proposed for the CQG 3.3.2. Loop quantum gravity 3.4 String theory 3.4.1 Heuristics of string theory 3.4.2. Anomalies of string theory 3.5 Other theories of quantum gravity 3.6 Unification (The Final Theory) 4. Cosmology Conclusions Notes Bibliography DOI: 10.13140/RG.2.2.35350.70724