A Numerical simulation of the direct injection diesel engine under motored and firing conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Numerical simulation of the direct injection diesel engine under motored and firing conditions PDF full book. Access full book title A Numerical simulation of the direct injection diesel engine under motored and firing conditions by Mark H. Carpenter. Download full books in PDF and EPUB format.

A Numerical simulation of the direct injection diesel engine under motored and firing conditions

A Numerical simulation of the direct injection diesel engine under motored and firing conditions PDF Author: Mark H. Carpenter
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


A Numerical simulation of the direct injection diesel engine under motored and firing conditions

A Numerical simulation of the direct injection diesel engine under motored and firing conditions PDF Author: Mark H. Carpenter
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Two-dimensional Analysis of Two-phase Reacting Flow in a Firing Direct-injection Diesel Engine

Two-dimensional Analysis of Two-phase Reacting Flow in a Firing Direct-injection Diesel Engine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description


A Multi-dimensional Flamelet Model for Ignition in Multi-feed Combustion Systems

A Multi-dimensional Flamelet Model for Ignition in Multi-feed Combustion Systems PDF Author: Eric Michael Doran
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 162

Book Description
This work develops a computational framework for modeling turbulent combustion in multi-feed systems that can be applied to internal combustion engines with multiple injections. In the first part of this work, the laminar flamelet equations are extended to two dimensions to enable the representation of a three-feed system that can be characterized by two mixture fractions. A coupling between the resulting equations and the turbulent flow field that enables the use of this method in unsteady simulations is then introduced. Models are developed to describe the scalar dissipation rates of each mixture fraction, which are the parameters that determine the influence of turbulent mixing on the flame structure. Furthermore, a new understanding of the function of the joint dissipation rate of both mixture fractions is discussed. Next, the extended flamelet equations are validated using Direct Numerical Simulations (DNS) of multi-stream ignition that employ detailed finite-rate chemistry. The results demonstrate that the ignition of the overall mixture is influenced by heat and mass transfer between the fuel streams and that this interaction is manifested as a front propagation in two-dimensional mixture fraction space. The flamelet model is shown to capture this behavior well and is therefore able to accurately describe the ignition process of each mixture. To provide closure between the flamelet chemistry and the turbulent flow field, information about the joint statistics of the two mixture fractions is required. An investigation of the joint probability density function (PDF) was carried out using DNS of two scalars mixing in stationary isotropic turbulence. It was found that available models for the joint PDF lack the ability to conserve all second-order moments necessary for an adequate description of the mixing field. A new five parameter bivariate beta distribution was therefore developed and shown to describe the joint PDF more accurately throughout the entire mixing time and for a wide range of initial conditions. Finally, the proposed model framework is applied in the simulation of a split-injection diesel engine and compared with experimental results. A range of operating points and different injection strategies are investigated. Comparisons with the experimental pressure traces show that the model is able to predict the ignition delay of each injection and the overall combustion process with good accuracy. These results indicate that the model is applicable to the range of regimes found in diesel combustion.

87-0200-87-0248

87-0200-87-0248 PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 566

Book Description


Chemical and Physical Processes in Combustion

Chemical and Physical Processes in Combustion PDF Author: Combustion Institute (U.S.) Eastern States Section. Fall Technical Meeting
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 496

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 644

Book Description


Technical Literature Abstracts

Technical Literature Abstracts PDF Author: Society of Automotive Engineers
Publisher:
ISBN:
Category : Technical literature
Languages : en
Pages : 400

Book Description


Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1284

Book Description


Cumulative Index [of The] SAE Papers

Cumulative Index [of The] SAE Papers PDF Author: Society of Automotive Engineers
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 1646

Book Description


Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Book Description