Measurement Error and Latent Variables in Econometrics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Measurement Error and Latent Variables in Econometrics PDF full book. Access full book title Measurement Error and Latent Variables in Econometrics by T. Wansbeek. Download full books in PDF and EPUB format.

Measurement Error and Latent Variables in Econometrics

Measurement Error and Latent Variables in Econometrics PDF Author: T. Wansbeek
Publisher: North Holland
ISBN:
Category : Business & Economics
Languages : en
Pages : 464

Book Description
The book first discusses in depth various aspects of the well-known inconsistency that arises when explanatory variables in a linear regression model are measured with error. Despite this inconsistency, the region where the true regression coeffecients lies can sometimes be characterized in a useful way, especially when bounds are known on the measurement error variance but also when such information is absent. Wage discrimination with imperfect productivity measurement is discussed as an important special case. Next, it is shown that the inconsistency is not accidental but fundamental. Due to an identification problem, no consistent estimators may exist at all. Additional information is desirable. This information can be of various types. One type is exact prior knowledge about functions of the parameters. This leads to the CALS estimator. Another major type is in the form of instrumental variables. Many aspects of this are discussed, including heteroskedasticity, combination of data from different sources, construction of instruments from the available data, and the LIML estimator, which is especially relevant when the instruments are weak. The scope is then widened to an embedding of the regression equation with measurement error in a multiple equations setting, leading to the exploratory factor analysis (EFA) model. This marks the step from measurement error to latent variables. Estimation of the EFA model leads to an eigenvalue problem. A variety of models is reviewed that involve eignevalue problems as their common characteristic. EFA is extended to confirmatory factor analysis (CFA) by including restrictions on the parameters of the factor analysis model, and next by relating the factors to background variables. These models are all structural equation models (SEMs), a very general and important class of models, with the LISREL model as its best-known representation, encompassing almost all linear equation systems with latent variables. Estimation of SEMs can be viewed as an application of the generalized method of moments (GMM). GMM in general and for SEM in particular is discussed at great length, including the generality of GMM, optimal weighting, conditional moments, continuous updating, simulation estimation, the link with the method of maximum likelihood, and in particular testing and model evaluation for GMM. The discussion concludes with nonlinear models. The emphasis is on polynomial models and models that are nonlinear due to a filter on the dependent variables, like discrete choice models or models with ordered categorical variables.

Measurement Error and Latent Variables in Econometrics

Measurement Error and Latent Variables in Econometrics PDF Author: T. Wansbeek
Publisher: North Holland
ISBN:
Category : Business & Economics
Languages : en
Pages : 464

Book Description
The book first discusses in depth various aspects of the well-known inconsistency that arises when explanatory variables in a linear regression model are measured with error. Despite this inconsistency, the region where the true regression coeffecients lies can sometimes be characterized in a useful way, especially when bounds are known on the measurement error variance but also when such information is absent. Wage discrimination with imperfect productivity measurement is discussed as an important special case. Next, it is shown that the inconsistency is not accidental but fundamental. Due to an identification problem, no consistent estimators may exist at all. Additional information is desirable. This information can be of various types. One type is exact prior knowledge about functions of the parameters. This leads to the CALS estimator. Another major type is in the form of instrumental variables. Many aspects of this are discussed, including heteroskedasticity, combination of data from different sources, construction of instruments from the available data, and the LIML estimator, which is especially relevant when the instruments are weak. The scope is then widened to an embedding of the regression equation with measurement error in a multiple equations setting, leading to the exploratory factor analysis (EFA) model. This marks the step from measurement error to latent variables. Estimation of the EFA model leads to an eigenvalue problem. A variety of models is reviewed that involve eignevalue problems as their common characteristic. EFA is extended to confirmatory factor analysis (CFA) by including restrictions on the parameters of the factor analysis model, and next by relating the factors to background variables. These models are all structural equation models (SEMs), a very general and important class of models, with the LISREL model as its best-known representation, encompassing almost all linear equation systems with latent variables. Estimation of SEMs can be viewed as an application of the generalized method of moments (GMM). GMM in general and for SEM in particular is discussed at great length, including the generality of GMM, optimal weighting, conditional moments, continuous updating, simulation estimation, the link with the method of maximum likelihood, and in particular testing and model evaluation for GMM. The discussion concludes with nonlinear models. The emphasis is on polynomial models and models that are nonlinear due to a filter on the dependent variables, like discrete choice models or models with ordered categorical variables.

Multiple Regression and Beyond

Multiple Regression and Beyond PDF Author: Timothy Z. Keith
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 640

Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources

AUBER Bibliography

AUBER Bibliography PDF Author:
Publisher:
ISBN:
Category : Economics
Languages : en
Pages : 984

Book Description


NBS Special Publication

NBS Special Publication PDF Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 574

Book Description


Bayesian Regression Modeling with INLA

Bayesian Regression Modeling with INLA PDF Author: Xiaofeng Wang
Publisher: CRC Press
ISBN: 1351165755
Category : Mathematics
Languages : en
Pages : 312

Book Description
INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC), the standard tool for Bayesian inference. Bayesian Regression Modeling with INLA covers a wide range of modern regression models and focuses on the INLA technique for building Bayesian models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to demonstrate the interplay of theory and practice with reproducible studies. Complete R commands are provided for each example, and a supporting website holds all of the data described in the book. An R package including the data and additional functions in the book is available to download. The book is aimed at readers who have a basic knowledge of statistical theory and Bayesian methodology. It gets readers up to date on the latest in Bayesian inference using INLA and prepares them for sophisticated, real-world work. Xiaofeng Wang is Professor of Medicine and Biostatistics at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University and a Full Staff in the Department of Quantitative Health Sciences at Cleveland Clinic. Yu Ryan Yue is Associate Professor of Statistics in the Paul H. Chook Department of Information Systems and Statistics at Baruch College, The City University of New York. Julian J. Faraway is Professor of Statistics in the Department of Mathematical Sciences at the University of Bath.

Linear Models in Statistics

Linear Models in Statistics PDF Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690

Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Measurement Error

Measurement Error PDF Author: John P. Buonaccorsi
Publisher: CRC Press
ISBN: 1420066587
Category : Mathematics
Languages : en
Pages : 465

Book Description
Over the last 20 years, comprehensive strategies for treating measurement error in complex models and accounting for the use of extra data to estimate measurement error parameters have emerged. Focusing on both established and novel approaches, Measurement Error: Models, Methods, and Applications provides an overview of the main techniques and illu

A Course in Mathematical Statistics and Large Sample Theory

A Course in Mathematical Statistics and Large Sample Theory PDF Author: Rabi Bhattacharya
Publisher: Springer
ISBN: 1493940325
Category : Mathematics
Languages : en
Pages : 386

Book Description
This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.

Measurement Error in Nonlinear Models

Measurement Error in Nonlinear Models PDF Author: Raymond J. Carroll
Publisher: CRC Press
ISBN: 1420010131
Category : Mathematics
Languages : en
Pages : 484

Book Description
It's been over a decade since the first edition of Measurement Error in Nonlinear Models splashed onto the scene, and research in the field has certainly not cooled in the interim. In fact, quite the opposite has occurred. As a result, Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition has been revamped and ex

Statistical Analysis of Measurement Error Models and Applications

Statistical Analysis of Measurement Error Models and Applications PDF Author: Philip J. Brown
Publisher: American Mathematical Soc.
ISBN: 0821851179
Category : Mathematics
Languages : en
Pages : 262

Book Description
Measurement error models describe functional relationships among variables observed, subject to random errors of measurement. This book treats general aspects of the measurement problem and features a discussion of the history of measurement error models.