Duality in Vector Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Duality in Vector Optimization PDF full book. Access full book title Duality in Vector Optimization by Radu Ioan Bot. Download full books in PDF and EPUB format.

Duality in Vector Optimization

Duality in Vector Optimization PDF Author: Radu Ioan Bot
Publisher: Springer Science & Business Media
ISBN: 3642028861
Category : Mathematics
Languages : en
Pages : 408

Book Description
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.

Duality in Vector Optimization

Duality in Vector Optimization PDF Author: Radu Ioan Bot
Publisher: Springer Science & Business Media
ISBN: 3642028861
Category : Mathematics
Languages : en
Pages : 408

Book Description
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.

Vector Optimization with Infimum and Supremum

Vector Optimization with Infimum and Supremum PDF Author: Andreas Löhne
Publisher: Springer Science & Business Media
ISBN: 3642183514
Category : Business & Economics
Languages : en
Pages : 211

Book Description
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.

Optimization by Vector Space Methods

Optimization by Vector Space Methods PDF Author: David G. Luenberger
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348

Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

Recent Developments in Vector Optimization

Recent Developments in Vector Optimization PDF Author: Qamrul Hasan Ansari
Publisher: Springer Science & Business Media
ISBN: 3642211143
Category : Business & Economics
Languages : en
Pages : 568

Book Description
We always come cross several decision-making problems in our daily life. Such problems are always conflicting in which many different view points should be satisfied. In politics, business, industrial systems, management science, networks, etc. one often encounters such kind of problems. The most important and difficult part in such problems is the conflict between various objectives and goals. In these problems, one has to find the minimum(or maximum) for several objective functions. Such problems are called vector optimization problems (VOP),multi-criteria optimization problems or multi-objective optimization problems. This volume deals with several different topics / aspects of vector optimization theory ranging from the very beginning to the most recent one. It contains fourteen chapters written by different experts in the field of vector optimization.

Conjugate Duality and Optimization

Conjugate Duality and Optimization PDF Author: R. Tyrrell Rockafellar
Publisher: SIAM
ISBN: 9781611970524
Category : Technology & Engineering
Languages : en
Pages : 80

Book Description
Provides a relatively brief introduction to conjugate duality in both finite- and infinite-dimensional problems. An emphasis is placed on the fundamental importance of the concepts of Lagrangian function, saddle-point, and saddle-value. General examples are drawn from nonlinear programming, approximation, stochastic programming, the calculus of variations, and optimal control.

Vector Optimization

Vector Optimization PDF Author: Johannes Jahn
Publisher: Springer Science & Business Media
ISBN: 3540248285
Category : Business & Economics
Languages : en
Pages : 471

Book Description
In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems). In the last decade vector optimization has been extended to problems with set-valued maps. This new field of research, called set optimiza tion, seems to have important applications to variational inequalities and optimization problems with multivalued data. The roots of vector optimization go back to F. Y. Edgeworth (1881) and V. Pareto (1896) who has already given the definition of the standard optimality concept in multiobjective optimization. But in mathematics this branch of optimization has started with the leg endary paper of H. W. Kuhn and A. W. Tucker (1951). Since about v Vl Preface the end of the 60's research is intensively made in vector optimization.

Set Optimization and Applications - The State of the Art

Set Optimization and Applications - The State of the Art PDF Author: Andreas H Hamel
Publisher: Springer
ISBN: 3662486709
Category : Mathematics
Languages : en
Pages : 333

Book Description
This volume presents five surveys with extensive bibliographies and six original contributions on set optimization and its applications in mathematical finance and game theory. The topics range from more conventional approaches that look for minimal/maximal elements with respect to vector orders or set relations, to the new complete-lattice approach that comprises a coherent solution concept for set optimization problems, along with existence results, duality theorems, optimality conditions, variational inequalities and theoretical foundations for algorithms. Modern approaches to scalarization methods can be found as well as a fundamental contribution to conditional analysis. The theory is tailor-made for financial applications, in particular risk evaluation and [super-]hedging for market models with transaction costs, but it also provides a refreshing new perspective on vector optimization. There is no comparable volume on the market, making the book an invaluable resource for researchers working in vector optimization and multi-criteria decision-making, mathematical finance and economics as well as [set-valued] variational analysis.

Variational Methods in Partially Ordered Spaces

Variational Methods in Partially Ordered Spaces PDF Author: Alfred Göpfert
Publisher: Springer Nature
ISBN: 3031365348
Category : Business & Economics
Languages : en
Pages : 576

Book Description
This book discusses basic tools of partially ordered spaces and applies them to variational methods in Nonlinear Analysis and for optimizing problems. This book is aimed at graduate students and research mathematicians.

Set-valued Optimization

Set-valued Optimization PDF Author: Akhtar A. Khan
Publisher: Springer
ISBN: 3642542654
Category : Mathematics
Languages : en
Pages : 781

Book Description
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economics among other things.

Constrained Optimization and Image Space Analysis

Constrained Optimization and Image Space Analysis PDF Author: Franco Giannessi
Publisher: Springer Science & Business Media
ISBN: 9780387247700
Category : Mathematics
Languages : en
Pages : 412

Book Description
Over the last twenty years, Professor Franco Giannessi, a highly respected researcher, has been working on an approach to optimization theory based on image space analysis. His theory has been elaborated by many other researchers in a wealth of papers. Constrained Optimization and Image Space Analysis unites his results and presents optimization theory and variational inequalities in their light. It presents a new approach to the theory of constrained extremum problems, including Mathematical Programming, Calculus of Variations and Optimal Control Problems. Such an approach unifies the several branches: Optimality Conditions, Duality, Penalizations, Vector Problems, Variational Inequalities and Complementarity Problems. The applications benefit from a unified theory.