A Likelihood Simulator for Dynamic Disequilibrium Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Likelihood Simulator for Dynamic Disequilibrium Models PDF full book. Access full book title A Likelihood Simulator for Dynamic Disequilibrium Models by Lung-fei Lee. Download full books in PDF and EPUB format.

A Likelihood Simulator for Dynamic Disequilibrium Models

A Likelihood Simulator for Dynamic Disequilibrium Models PDF Author: Lung-fei Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 58

Book Description


A Likelihood Simulator for Dynamic Disequilibrium Models

A Likelihood Simulator for Dynamic Disequilibrium Models PDF Author: Lung-fei Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 58

Book Description


Simulation Estimation of Dynamic Switching Regression and Dynamic Disequilibrium Models

Simulation Estimation of Dynamic Switching Regression and Dynamic Disequilibrium Models PDF Author: Lung-fei Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 70

Book Description


Journal of Econometrics

Journal of Econometrics PDF Author:
Publisher:
ISBN:
Category : Econometrics
Languages : en
Pages : 868

Book Description


Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation PDF Author: Kenneth Train
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399

Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.

Simulation-based Econometric Methods

Simulation-based Econometric Methods PDF Author: Christian Gouriéroux
Publisher: OUP Oxford
ISBN: 019152509X
Category : Business & Economics
Languages : en
Pages : 190

Book Description
This book introduces a new generation of statistical econometrics. After linear models leading to analytical expressions for estimators, and non-linear models using numerical optimization algorithms, the availability of high- speed computing has enabled econometricians to consider econometric models without simple analytical expressions. The previous difficulties presented by the presence of integrals of large dimensions in the probability density functions or in the moments can be circumvented by a simulation-based approach. After a brief survey of classical parametric and semi-parametric non-linear estimation methods and a description of problems in which criterion functions contain integrals, the authors present a general form of the model where it is possible to simulate the observations. They then move to calibration problems and the simulated analogue of the method of moments, before considering simulated versions of maximum likelihood, pseudo-maximum likelihood, or non-linear least squares. The general principle of indirect inference is presented and is then applied to limited dependent variable models and to financial series.

DSGE Models in Macroeconomics

DSGE Models in Macroeconomics PDF Author: Nathan Balke
Publisher: Emerald Group Publishing
ISBN: 1781903050
Category : Business & Economics
Languages : en
Pages : 480

Book Description
This volume of Advances in Econometrics contains articles that examine key topics in the modeling and estimation of dynamic stochastic general equilibrium (DSGE) models. Because DSGE models combine micro- and macroeconomic theory with formal econometric modeling and inference, over the past decade they have become an established framework for analy

Computational Economics and Econometrics

Computational Economics and Econometrics PDF Author: H. Amman
Publisher: Springer Science & Business Media
ISBN: 9401131627
Category : Business & Economics
Languages : en
Pages : 170

Book Description
The field of Computational Economics is a fast growing area. Due to the limitations in analytical modeling, more and more researchers apply numerical methods as a means of problem solving. In tum these quantitative results can be used to make qualitative statements. This volume of the Advanced Series in Theoretical and Applied and Econometrics comprises a selected number of papers in the field of computational economics presented at the Annual Meeting of the Society Economic Dynamics and Control held in Minneapolis, June 1990. The volume covers ten papers dealing with computational issues in Econo metrics, Economics and Optimization. The first five papers in these proceedings are dedicated to numerical issues in econometric estimation. The following three papers are concerned with computational issues in model solving and optimization. The last two papers highlight some numerical techniques for solving micro models. We are sure that Computational Economics will become an important new trend in Economics in the coming decade. Hopefully this volume can be one of the first contributions highlighting this new trend. The Editors H.M. Amman et a1. (eds), Computational Economics and Econometrics, vii. © 1992 Kluwer Academic Publishers. PART ONE ECONOMETRICS LIKELIHOOD EVALUATION FOR DYNAMIC LATENT VARIABLES 1 MODELS DAVID F. HENDRY Nuffield College, Oxford, U.K. and JEAN-FRANc;mS RICHARD ISDS, Pittsburgh University, Pittsburgh, PA, U.S.A.

Simulation-based Inference in Econometrics

Simulation-based Inference in Econometrics PDF Author: Roberto Mariano
Publisher: Cambridge University Press
ISBN: 9780521591126
Category : Business & Economics
Languages : en
Pages : 488

Book Description
This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.

Statistical Theory and Method Abstracts

Statistical Theory and Method Abstracts PDF Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 670

Book Description


Bayesian Inference in Dynamic Econometric Models

Bayesian Inference in Dynamic Econometric Models PDF Author: Luc Bauwens
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370

Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.