Author: David S. Richeson
Publisher: Princeton University Press
ISBN: 0691218722
Category : Mathematics
Languages : en
Pages : 450
Book Description
A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
Tales of Impossibility
Author: David S. Richeson
Publisher: Princeton University Press
ISBN: 0691218722
Category : Mathematics
Languages : en
Pages : 450
Book Description
A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
Publisher: Princeton University Press
ISBN: 0691218722
Category : Mathematics
Languages : en
Pages : 450
Book Description
A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
Yearning for the Impossible
Author: John Stillwell
Publisher: CRC Press
ISBN: 1439865779
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress: - Irrational and Imaginary Numbers - The Fourth Dimension - Curved Space - Infinity and others The author puts t
Publisher: CRC Press
ISBN: 1439865779
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress: - Irrational and Imaginary Numbers - The Fourth Dimension - Curved Space - Infinity and others The author puts t
A History of Mathematical Impossibility
Author: Jesper Lützen
Publisher: Oxford University Press
ISBN: 0192867393
Category : Mathematical analysis
Languages : en
Pages : 305
Book Description
Many of the most famous results in mathematics are impossibility theorems stating that something cannot be done. Good examples include the quadrature of the circle by ruler and compass, the solution of the quintic equation by radicals, Fermat's last theorem, and the impossibility of proving the parallel postulate from the other axioms of Euclidean geometry. This book tells the history of these and many other impossibility theorems starting with the ancient Greek proof of the incommensurability of the side and the diagonal in a square. Lützen argues that the role of impossibility results have changed over time. At first, they were considered rather unimportant meta-statements concerning mathematics but gradually they obtained the role of important proper mathematical results that can and should be proved. While mathematical impossibility proofs are more rigorous than impossibility arguments in other areas of life, mathematicians have employed great ingenuity to circumvent impossibilities by changing the rules of the game. For example, complex numbers were invented in order to make impossible equations solvable. In this way, impossibilities have been a strong creative force in the development of mathematics, mathematical physics, and social science.
Publisher: Oxford University Press
ISBN: 0192867393
Category : Mathematical analysis
Languages : en
Pages : 305
Book Description
Many of the most famous results in mathematics are impossibility theorems stating that something cannot be done. Good examples include the quadrature of the circle by ruler and compass, the solution of the quintic equation by radicals, Fermat's last theorem, and the impossibility of proving the parallel postulate from the other axioms of Euclidean geometry. This book tells the history of these and many other impossibility theorems starting with the ancient Greek proof of the incommensurability of the side and the diagonal in a square. Lützen argues that the role of impossibility results have changed over time. At first, they were considered rather unimportant meta-statements concerning mathematics but gradually they obtained the role of important proper mathematical results that can and should be proved. While mathematical impossibility proofs are more rigorous than impossibility arguments in other areas of life, mathematicians have employed great ingenuity to circumvent impossibilities by changing the rules of the game. For example, complex numbers were invented in order to make impossible equations solvable. In this way, impossibilities have been a strong creative force in the development of mathematics, mathematical physics, and social science.
The Arrow Impossibility Theorem
Author: Eric Maskin
Publisher: Columbia University Press
ISBN: 0231153287
Category : Business & Economics
Languages : en
Pages : 164
Book Description
Kenneth Arrow's pathbreaking Òimpossibility theoremÓ was a watershed in the history of welfare economics, voting theory, and collective choice, demonstrating that there is no voting rule that satisfies the four desirable axioms of decisiveness, consensus, nondictatorship, and independence. In this book, Amartya Sen and Eric Maskin explore the implications of ArrowÕs theorem. Sen considers its ongoing utility, exploring the theoremÕs value and limitations in relation to recent research on social reasoning, while Maskin discusses how to design a voting rule that gets us closer to the idealÑgiven that achieving the ideal is impossible. The volume also contains a contextual introduction by social choice scholar Prasanta K. Pattanaik and commentaries from Joseph E. Stiglitz and Kenneth Arrow himself, as well as essays by Sen and Maskin outlining the mathematical proof and framework behind their assertions.
Publisher: Columbia University Press
ISBN: 0231153287
Category : Business & Economics
Languages : en
Pages : 164
Book Description
Kenneth Arrow's pathbreaking Òimpossibility theoremÓ was a watershed in the history of welfare economics, voting theory, and collective choice, demonstrating that there is no voting rule that satisfies the four desirable axioms of decisiveness, consensus, nondictatorship, and independence. In this book, Amartya Sen and Eric Maskin explore the implications of ArrowÕs theorem. Sen considers its ongoing utility, exploring the theoremÕs value and limitations in relation to recent research on social reasoning, while Maskin discusses how to design a voting rule that gets us closer to the idealÑgiven that achieving the ideal is impossible. The volume also contains a contextual introduction by social choice scholar Prasanta K. Pattanaik and commentaries from Joseph E. Stiglitz and Kenneth Arrow himself, as well as essays by Sen and Maskin outlining the mathematical proof and framework behind their assertions.
The Impossibility of Squaring the Circle in the 17th Century
Author: Davide Crippa
Publisher: Springer
ISBN: 3030016382
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book is about James Gregory’s attempt to prove that the quadrature of the circle, the ellipse and the hyperbola cannot be found algebraically. Additonally, the subsequent debates that ensued between Gregory, Christiaan Huygens and G.W. Leibniz are presented and analyzed. These debates eventually culminated with the impossibility result that Leibniz appended to his unpublished treatise on the arithmetical quadrature of the circle. The author shows how the controversy around the possibility of solving the quadrature of the circle by certain means (algebraic curves) pointed to metamathematical issues, particularly to the completeness of algebra with respect to geometry. In other words, the question underlying the debate on the solvability of the circle-squaring problem may be thus phrased: can finite polynomial equations describe any geometrical quantity? As the study reveals, this question was central in the early days of calculus, when transcendental quantities and operations entered the stage. Undergraduate and graduate students in the history of science, in philosophy and in mathematics will find this book appealing as well as mathematicians and historians with broad interests in the history of mathematics.
Publisher: Springer
ISBN: 3030016382
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book is about James Gregory’s attempt to prove that the quadrature of the circle, the ellipse and the hyperbola cannot be found algebraically. Additonally, the subsequent debates that ensued between Gregory, Christiaan Huygens and G.W. Leibniz are presented and analyzed. These debates eventually culminated with the impossibility result that Leibniz appended to his unpublished treatise on the arithmetical quadrature of the circle. The author shows how the controversy around the possibility of solving the quadrature of the circle by certain means (algebraic curves) pointed to metamathematical issues, particularly to the completeness of algebra with respect to geometry. In other words, the question underlying the debate on the solvability of the circle-squaring problem may be thus phrased: can finite polynomial equations describe any geometrical quantity? As the study reveals, this question was central in the early days of calculus, when transcendental quantities and operations entered the stage. Undergraduate and graduate students in the history of science, in philosophy and in mathematics will find this book appealing as well as mathematicians and historians with broad interests in the history of mathematics.
Yearning for the Impossible
Author: John Stillwell
Publisher: CRC Press
ISBN: 0429998023
Category : Mathematics
Languages : en
Pages : 278
Book Description
Yearning for the Impossible: The Surprising Truth of Mathematics, Second Edition explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress. The author puts these creations into a broader context involving related "impossibilities" from art, literature, philosophy, and physics. This new edition contains many new exercises and commentaries, clearly discussing a wide range of challenging subjects.
Publisher: CRC Press
ISBN: 0429998023
Category : Mathematics
Languages : en
Pages : 278
Book Description
Yearning for the Impossible: The Surprising Truth of Mathematics, Second Edition explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress. The author puts these creations into a broader context involving related "impossibilities" from art, literature, philosophy, and physics. This new edition contains many new exercises and commentaries, clearly discussing a wide range of challenging subjects.
Mathematics in Historical Context
Author: Jeff Suzuki
Publisher: MAA
ISBN: 9780883855706
Category : Mathematics
Languages : en
Pages : 432
Book Description
What would Newton see if he looked out his bedroom window? This book describes the world around the important mathematicians of the past, and explores the complex interaction between mathematics, mathematicians, and society. It takes the reader on a grand tour of history from the ancient Egyptians to the twentieth century to show how mathematicians and mathematics were affected by the outside world, and at the same time how the outside world was affected by mathematics and mathematicians. Part biography, part mathematics, and part history, this book provides the interested layperson the background to understand mathematics and the history of mathematics, and is suitable for supplemental reading in any history of mathematics course.
Publisher: MAA
ISBN: 9780883855706
Category : Mathematics
Languages : en
Pages : 432
Book Description
What would Newton see if he looked out his bedroom window? This book describes the world around the important mathematicians of the past, and explores the complex interaction between mathematics, mathematicians, and society. It takes the reader on a grand tour of history from the ancient Egyptians to the twentieth century to show how mathematicians and mathematics were affected by the outside world, and at the same time how the outside world was affected by mathematics and mathematicians. Part biography, part mathematics, and part history, this book provides the interested layperson the background to understand mathematics and the history of mathematics, and is suitable for supplemental reading in any history of mathematics course.
The Improbability Principle
Author: David J. Hand
Publisher: Scientific American / Farrar, Straus and Giroux
ISBN: 0374711399
Category : Mathematics
Languages : en
Pages : 289
Book Description
In The Improbability Principle, the renowned statistician David J. Hand argues that extraordinarily rare events are anything but. In fact, they're commonplace. Not only that, we should all expect to experience a miracle roughly once every month. But Hand is no believer in superstitions, prophecies, or the paranormal. His definition of "miracle" is thoroughly rational. No mystical or supernatural explanation is necessary to understand why someone is lucky enough to win the lottery twice, or is destined to be hit by lightning three times and still survive. All we need, Hand argues, is a firm grounding in a powerful set of laws: the laws of inevitability, of truly large numbers, of selection, of the probability lever, and of near enough. Together, these constitute Hand's groundbreaking Improbability Principle. And together, they explain why we should not be so surprised to bump into a friend in a foreign country, or to come across the same unfamiliar word four times in one day. Hand wrestles with seemingly less explicable questions as well: what the Bible and Shakespeare have in common, why financial crashes are par for the course, and why lightning does strike the same place (and the same person) twice. Along the way, he teaches us how to use the Improbability Principle in our own lives—including how to cash in at a casino and how to recognize when a medicine is truly effective. An irresistible adventure into the laws behind "chance" moments and a trusty guide for understanding the world and universe we live in, The Improbability Principle will transform how you think about serendipity and luck, whether it's in the world of business and finance or you're merely sitting in your backyard, tossing a ball into the air and wondering where it will land.
Publisher: Scientific American / Farrar, Straus and Giroux
ISBN: 0374711399
Category : Mathematics
Languages : en
Pages : 289
Book Description
In The Improbability Principle, the renowned statistician David J. Hand argues that extraordinarily rare events are anything but. In fact, they're commonplace. Not only that, we should all expect to experience a miracle roughly once every month. But Hand is no believer in superstitions, prophecies, or the paranormal. His definition of "miracle" is thoroughly rational. No mystical or supernatural explanation is necessary to understand why someone is lucky enough to win the lottery twice, or is destined to be hit by lightning three times and still survive. All we need, Hand argues, is a firm grounding in a powerful set of laws: the laws of inevitability, of truly large numbers, of selection, of the probability lever, and of near enough. Together, these constitute Hand's groundbreaking Improbability Principle. And together, they explain why we should not be so surprised to bump into a friend in a foreign country, or to come across the same unfamiliar word four times in one day. Hand wrestles with seemingly less explicable questions as well: what the Bible and Shakespeare have in common, why financial crashes are par for the course, and why lightning does strike the same place (and the same person) twice. Along the way, he teaches us how to use the Improbability Principle in our own lives—including how to cash in at a casino and how to recognize when a medicine is truly effective. An irresistible adventure into the laws behind "chance" moments and a trusty guide for understanding the world and universe we live in, The Improbability Principle will transform how you think about serendipity and luck, whether it's in the world of business and finance or you're merely sitting in your backyard, tossing a ball into the air and wondering where it will land.
Euler's Gem
Author: David S. Richeson
Publisher: Princeton University Press
ISBN: 0691191999
Category : Mathematics
Languages : en
Pages : 336
Book Description
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Publisher: Princeton University Press
ISBN: 0691191999
Category : Mathematics
Languages : en
Pages : 336
Book Description
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Impossibility
Author: John D. Barrow
Publisher: Oxford University Press, USA
ISBN: 0195130820
Category : Fiction
Languages : en
Pages : 294
Book Description
Astronomer John Barrow takes an intriguing look at the limits of science, who argues that there are things that are ultimately unknowable, undoable, or unreachable.
Publisher: Oxford University Press, USA
ISBN: 0195130820
Category : Fiction
Languages : en
Pages : 294
Book Description
Astronomer John Barrow takes an intriguing look at the limits of science, who argues that there are things that are ultimately unknowable, undoable, or unreachable.