A History of Algebraic and Differential Topology, 1900 - 1960 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A History of Algebraic and Differential Topology, 1900 - 1960 PDF full book. Access full book title A History of Algebraic and Differential Topology, 1900 - 1960 by Jean Dieudonné. Download full books in PDF and EPUB format.

A History of Algebraic and Differential Topology, 1900 - 1960

A History of Algebraic and Differential Topology, 1900 - 1960 PDF Author: Jean Dieudonné
Publisher: Springer Science & Business Media
ISBN: 0817649077
Category : Mathematics
Languages : en
Pages : 666

Book Description
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet

A History of Algebraic and Differential Topology, 1900 - 1960

A History of Algebraic and Differential Topology, 1900 - 1960 PDF Author: Jean Dieudonné
Publisher: Springer Science & Business Media
ISBN: 0817649077
Category : Mathematics
Languages : en
Pages : 666

Book Description
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet

History Algebraic Geometry

History Algebraic Geometry PDF Author: Jean Dieudonné
Publisher: CRC Press
ISBN: 9780412993718
Category : Mathematics
Languages : en
Pages : 202

Book Description
This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.

History of Topology

History of Topology PDF Author: I.M. James
Publisher: Elsevier
ISBN: 0080534074
Category : Mathematics
Languages : en
Pages : 1067

Book Description
Topology, for many years, has been one of the most exciting and influential fields of research in modern mathematics. Although its origins may be traced back several hundred years, it was Poincaré who "gave topology wings" in a classic series of articles published around the turn of the century. While the earlier history, sometimes called the prehistory, is also considered, this volume is mainly concerned with the more recent history of topology, from Poincaré onwards.As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Papers on Topology

Papers on Topology PDF Author:
Publisher: American Mathematical Soc.
ISBN: 0821852345
Category :
Languages : en
Pages : 250

Book Description


The Knot Book

The Knot Book PDF Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330

Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

Modern Classical Homotopy Theory

Modern Classical Homotopy Theory PDF Author: Jeffrey Strom
Publisher: American Mathematical Soc.
ISBN: 0821852868
Category : Mathematics
Languages : en
Pages : 862

Book Description
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

A Short Course in Differential Topology

A Short Course in Differential Topology PDF Author: Bjørn Ian Dundas
Publisher: Cambridge University Press
ISBN: 1108571123
Category : Mathematics
Languages : en
Pages : 265

Book Description
Manifolds are abound in mathematics and physics, and increasingly in cybernetics and visualization where they often reflect properties of complex systems and their configurations. Differential topology gives us the tools to study these spaces and extract information about the underlying systems. This book offers a concise and modern introduction to the core topics of differential topology for advanced undergraduates and beginning graduate students. It covers the basics on smooth manifolds and their tangent spaces before moving on to regular values and transversality, smooth flows and differential equations on manifolds, and the theory of vector bundles and locally trivial fibrations. The final chapter gives examples of local-to-global properties, a short introduction to Morse theory and a proof of Ehresmann's fibration theorem. The treatment is hands-on, including many concrete examples and exercises woven into the text, with hints provided to guide the student.

A First Course in Topology

A First Course in Topology PDF Author: John McCleary
Publisher: American Mathematical Soc.
ISBN: 0821838849
Category : Mathematics
Languages : en
Pages : 226

Book Description
How many dimensions does our universe require for a comprehensive physical description? In 1905, Poincare argued philosophically about the necessity of the three familiar dimensions, while recent research is based on 11 dimensions or even 23 dimensions. The notion of dimension itself presented a basic problem to the pioneers of topology. Cantor asked if dimension was a topological feature of Euclidean space. To answer this question, some important topological ideas were introduced by Brouwer, giving shape to a subject whose development dominated the twentieth century. The basic notions in topology are varied and a comprehensive grounding in point-set topology, the definition and use of the fundamental group, and the beginnings of homology theory requires considerable time.The goal of this book is a focused introduction through these classical topics, aiming throughout at the classical result of the Invariance of Dimension. This text is based on the author's course given at Vassar College and is intended for advanced undergraduate students. It is suitable for a semester-long course on topology for students who have studied real analysis and linear algebra. It is also a good choice for a capstone course, senior seminar, or independent study.

Geometry in History

Geometry in History PDF Author: S. G. Dani
Publisher: Springer Nature
ISBN: 3030136094
Category : Mathematics
Languages : en
Pages : 759

Book Description
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.