Author: Israel Kleiner
Publisher: Springer Science & Business Media
ISBN: 0817646841
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.
A History of Abstract Algebra
Author: Israel Kleiner
Publisher: Springer Science & Business Media
ISBN: 0817646841
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.
Publisher: Springer Science & Business Media
ISBN: 0817646841
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.
A History of Abstract Algebra
Author: Jeremy Gray
Publisher: Springer
ISBN: 3319947737
Category : Mathematics
Languages : en
Pages : 412
Book Description
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss’s theory of numbers and Galois’s ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat’s Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois’s approach to the solution of equations. The book also describes the relationship between Kummer’s ideal numbers and Dedekind’s ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer’s. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
Publisher: Springer
ISBN: 3319947737
Category : Mathematics
Languages : en
Pages : 412
Book Description
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss’s theory of numbers and Galois’s ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat’s Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois’s approach to the solution of equations. The book also describes the relationship between Kummer’s ideal numbers and Dedekind’s ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer’s. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
A Course in Algebra
Author: Ėrnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category : Mathematics
Languages : en
Pages : 532
Book Description
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category : Mathematics
Languages : en
Pages : 532
Book Description
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Elements of Abstract Algebra
Author: Allan Clark
Publisher: Courier Corporation
ISBN: 0486140350
Category : Mathematics
Languages : en
Pages : 242
Book Description
Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.
Publisher: Courier Corporation
ISBN: 0486140350
Category : Mathematics
Languages : en
Pages : 242
Book Description
Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.
The Genesis of the Abstract Group Concept
Author: Hans Wussing
Publisher: Courier Corporation
ISBN: 0486458687
Category : Mathematics
Languages : en
Pages : 338
Book Description
"It is a pleasure to turn to Wussing's book, a sound presentation of history," declared the Bulletin of the American Mathematical Society. The author, Director of the Institute for the History of Medicine and Science at Leipzig University, traces the axiomatic formulation of the abstract notion of group. 1984 edition.
Publisher: Courier Corporation
ISBN: 0486458687
Category : Mathematics
Languages : en
Pages : 338
Book Description
"It is a pleasure to turn to Wussing's book, a sound presentation of history," declared the Bulletin of the American Mathematical Society. The author, Director of the Institute for the History of Medicine and Science at Leipzig University, traces the axiomatic formulation of the abstract notion of group. 1984 edition.
Introduction to Abstract Algebra
Author: Jonathan D. H. Smith
Publisher: CRC Press
ISBN: 1498731627
Category : Mathematics
Languages : en
Pages : 353
Book Description
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
Publisher: CRC Press
ISBN: 1498731627
Category : Mathematics
Languages : en
Pages : 353
Book Description
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
Abstract Algebra
Author: W. E. Deskins
Publisher: Courier Corporation
ISBN: 0486158462
Category : Mathematics
Languages : en
Pages : 660
Book Description
Excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. Features many examples and problems.
Publisher: Courier Corporation
ISBN: 0486158462
Category : Mathematics
Languages : en
Pages : 660
Book Description
Excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. Features many examples and problems.
Taming the Unknown
Author: Victor J. Katz
Publisher: Princeton University Press
ISBN: 0691149054
Category : Mathematics
Languages : en
Pages : 504
Book Description
What is algebra? For some, it is an abstract language of x's and y’s. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns, the authors trace the development of these techniques from geometric beginnings in ancient Egypt and Mesopotamia and classical Greece. They show how similar problems were tackled in Alexandrian Greece, in China, and in India, then look at how medieval Islamic scholars shifted to an algorithmic stage, which was further developed by medieval and early modern European mathematicians. With the introduction of a flexible and operative symbolism in the sixteenth and seventeenth centuries, algebra entered into a dynamic period characterized by the analytic geometry that could evaluate curves represented by equations in two variables, thereby solving problems in the physics of motion. This new symbolism freed mathematicians to study equations of degrees higher than two and three, ultimately leading to the present abstract era. Taming the Unknown follows algebra’s remarkable growth through different epochs around the globe.
Publisher: Princeton University Press
ISBN: 0691149054
Category : Mathematics
Languages : en
Pages : 504
Book Description
What is algebra? For some, it is an abstract language of x's and y’s. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns, the authors trace the development of these techniques from geometric beginnings in ancient Egypt and Mesopotamia and classical Greece. They show how similar problems were tackled in Alexandrian Greece, in China, and in India, then look at how medieval Islamic scholars shifted to an algorithmic stage, which was further developed by medieval and early modern European mathematicians. With the introduction of a flexible and operative symbolism in the sixteenth and seventeenth centuries, algebra entered into a dynamic period characterized by the analytic geometry that could evaluate curves represented by equations in two variables, thereby solving problems in the physics of motion. This new symbolism freed mathematicians to study equations of degrees higher than two and three, ultimately leading to the present abstract era. Taming the Unknown follows algebra’s remarkable growth through different epochs around the globe.
Introductory Modern Algebra
Author: Saul Stahl
Publisher: John Wiley & Sons
ISBN: 1118552032
Category : Mathematics
Languages : en
Pages : 464
Book Description
Praise for the First Edition "Stahl offers the solvability of equations from the historicalpoint of view...one of the best books available to support aone-semester introduction to abstract algebra." —CHOICE Introductory Modern Algebra: A Historical Approach, SecondEdition presents the evolution of algebra and provides readerswith the opportunity to view modern algebra as a consistentmovement from concrete problems to abstract principles. With a fewpertinent excerpts from the writings of some of the greatestmathematicians, the Second Edition uniquely facilitates theunderstanding of pivotal algebraic ideas. The author provides a clear, precise, and accessibleintroduction to modern algebra and also helps to develop a moreimmediate and well-grounded understanding of how equations lead topermutation groups and what those groups can inform us about suchdiverse items as multivariate functions and the 15-puzzle.Featuring new sections on topics such as group homomorphisms, theRSA algorithm, complex conjugation, the factorization of realpolynomials, and the fundamental theorem of algebra, the SecondEdition also includes: An in-depth explanation of the principles and practices ofmodern algebra in terms of the historical development from theRenaissance solution of the cubic equation to Dedekind'sideals Historical discussions integrated with the development ofmodern and abstract algebra in addition to many new explicitstatements of theorems, definitions, and terminology A new appendix on logic and proofs, sets, functions, andequivalence relations Over 1,000 new examples and multi-level exercises at the end ofeach section and chapter as well as updated chapter summaries Introductory Modern Algebra: A Historical Approach, SecondEdition is an excellent textbook for upper-undergraduatecourses in modern and abstract algebra.
Publisher: John Wiley & Sons
ISBN: 1118552032
Category : Mathematics
Languages : en
Pages : 464
Book Description
Praise for the First Edition "Stahl offers the solvability of equations from the historicalpoint of view...one of the best books available to support aone-semester introduction to abstract algebra." —CHOICE Introductory Modern Algebra: A Historical Approach, SecondEdition presents the evolution of algebra and provides readerswith the opportunity to view modern algebra as a consistentmovement from concrete problems to abstract principles. With a fewpertinent excerpts from the writings of some of the greatestmathematicians, the Second Edition uniquely facilitates theunderstanding of pivotal algebraic ideas. The author provides a clear, precise, and accessibleintroduction to modern algebra and also helps to develop a moreimmediate and well-grounded understanding of how equations lead topermutation groups and what those groups can inform us about suchdiverse items as multivariate functions and the 15-puzzle.Featuring new sections on topics such as group homomorphisms, theRSA algorithm, complex conjugation, the factorization of realpolynomials, and the fundamental theorem of algebra, the SecondEdition also includes: An in-depth explanation of the principles and practices ofmodern algebra in terms of the historical development from theRenaissance solution of the cubic equation to Dedekind'sideals Historical discussions integrated with the development ofmodern and abstract algebra in addition to many new explicitstatements of theorems, definitions, and terminology A new appendix on logic and proofs, sets, functions, andequivalence relations Over 1,000 new examples and multi-level exercises at the end ofeach section and chapter as well as updated chapter summaries Introductory Modern Algebra: A Historical Approach, SecondEdition is an excellent textbook for upper-undergraduatecourses in modern and abstract algebra.