A High-temperature, High-voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A High-temperature, High-voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches PDF full book. Access full book title A High-temperature, High-voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches by Mohammad Aminul Huque. Download full books in PDF and EPUB format.

A High-temperature, High-voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches

A High-temperature, High-voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches PDF Author: Mohammad Aminul Huque
Publisher:
ISBN:
Category :
Languages : en
Pages : 105

Book Description
High-temperature integrated circuit (IC) design is one of the new frontiers in microelectronics that can significantly improve the performance of the electrical systems in extreme environment applications, including automotive, aerospace, well-logging, geothermal, and nuclear. Power modules (DC-DC converters, inverters, etc.) are key components in these electrical systems. Power-to-volume and power-to-weight ratios of these modules can be significantly improved by employing silicon carbide (SiC) based power switches which are capable of operating at much higher temperature than silicon (Si) and gallium arsenide (GaAs) based conventional devices. For successful realization of such high-temperature power electronic circuits, associated control electronics also need to perform at high temperature. In any power converter, gate driver circuit performs as the interface between a low-power microcontroller and the semiconductor power switches. This dissertation presents design, implementation, and measurement results of a silicon-on-insulator (SOI) based high-temperature (>200° C) and high-voltage (>30 V) universal gate driver integrated circuit with high drive current (>3 A) for SiC power switches. This mixed signal IC has primarily been designed for automotive applications where the under-hood temperature can reach 200° C. Prototype driver circuits have been designed and implemented in a Bipolar-CMOS- DMOS (BCD) on SOI process and have been successfully tested up to 200° C ambient temperature driving SiC switches (MOSFET and JFET) without any heat sink and thermal management. This circuit can generate 30V peak-to-peak gate drive signal and can source and sink 3A peak drive current. Temperature compensating and temperature independent design techniques are employed to design the critical functional units like dead-time controller and level shifters in the driver circuit. Chip-level layout techniques are employed to enhance the reliability of the circuit at high temperature. High-temperature test boards have been developed to test the prototype ICs. An ultra low power on-chip temperature sensor circuit has also been designed and integrated into the gate-driver die to safeguard the driver circuit against excessive die temperature (> 220° C). This new temperature monitoring approach utilizes a reverse biased p-n junction diode as the temperature sensing element. Power consumption of this sensor circuit is less than 10 [mu]W at 200° C.

A High-temperature, High-voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches

A High-temperature, High-voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches PDF Author: Mohammad Aminul Huque
Publisher:
ISBN:
Category :
Languages : en
Pages : 105

Book Description
High-temperature integrated circuit (IC) design is one of the new frontiers in microelectronics that can significantly improve the performance of the electrical systems in extreme environment applications, including automotive, aerospace, well-logging, geothermal, and nuclear. Power modules (DC-DC converters, inverters, etc.) are key components in these electrical systems. Power-to-volume and power-to-weight ratios of these modules can be significantly improved by employing silicon carbide (SiC) based power switches which are capable of operating at much higher temperature than silicon (Si) and gallium arsenide (GaAs) based conventional devices. For successful realization of such high-temperature power electronic circuits, associated control electronics also need to perform at high temperature. In any power converter, gate driver circuit performs as the interface between a low-power microcontroller and the semiconductor power switches. This dissertation presents design, implementation, and measurement results of a silicon-on-insulator (SOI) based high-temperature (>200° C) and high-voltage (>30 V) universal gate driver integrated circuit with high drive current (>3 A) for SiC power switches. This mixed signal IC has primarily been designed for automotive applications where the under-hood temperature can reach 200° C. Prototype driver circuits have been designed and implemented in a Bipolar-CMOS- DMOS (BCD) on SOI process and have been successfully tested up to 200° C ambient temperature driving SiC switches (MOSFET and JFET) without any heat sink and thermal management. This circuit can generate 30V peak-to-peak gate drive signal and can source and sink 3A peak drive current. Temperature compensating and temperature independent design techniques are employed to design the critical functional units like dead-time controller and level shifters in the driver circuit. Chip-level layout techniques are employed to enhance the reliability of the circuit at high temperature. High-temperature test boards have been developed to test the prototype ICs. An ultra low power on-chip temperature sensor circuit has also been designed and integrated into the gate-driver die to safeguard the driver circuit against excessive die temperature (> 220° C). This new temperature monitoring approach utilizes a reverse biased p-n junction diode as the temperature sensing element. Power consumption of this sensor circuit is less than 10 [mu]W at 200° C.

A Highly Integrated Gate Driver with 100% Duty Cycle Capability and High Output Current Drive for Wide-bandgap Power Switches in Extreme Environments

A Highly Integrated Gate Driver with 100% Duty Cycle Capability and High Output Current Drive for Wide-bandgap Power Switches in Extreme Environments PDF Author: Robert Lee Greenwell
Publisher:
ISBN:
Category :
Languages : en
Pages : 120

Book Description
High-temperature integrated circuits fill a need in applications where there are obvious benefits to reduced thermal management or where circuitry is placed away from temperature extremes. Examples of these applications include aerospace, automotive, power generation, and well-logging. This work focuses on the automotive applications, in which the growing demand for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles (FCVs) has increased the need for high-temperature electronics that can operate at the extreme ambient temperatures that exist under the hood, which can be in excess of 150°C. Silicon carbide (SiC) and other wide-bandgap power switches that can function at these temperature extremes are now entering the market. To take full advantage of their potential, high-temperature capable circuits that can also operate in these environments are required. This work presents a high-temperature, high-voltage, silicon-on-insulator (SOI) based gate driver designed for SiC and other wide-bandgap power switches for DC-DC converters and traction drives in HEVs. This highly integrated gate driver integrated circuit (IC) has been designed to operate at ambient temperatures up to 200oC, have a high on-chip drive current, require a minimum complement of off-chip components, and be capable of operating at a 100% high-side duty cycle. Successful operation of the gate driver circuit across temperature with minimal or no thermal management will help to achieve higher power-to-weight and power-to-volume ratios for the power electronics modules in HEVs and, therefore, higher efficiency.

A Wide Bandgap Silicon Carbide (SiC) Gate Driver for High Temperature, High Voltage, and High Frequency Applications

A Wide Bandgap Silicon Carbide (SiC) Gate Driver for High Temperature, High Voltage, and High Frequency Applications PDF Author: Rajan Raj Lamichhane
Publisher:
ISBN: 9781303673061
Category : Battery chargers
Languages : en
Pages : 222

Book Description
The potential of silicon carbide (SiC) for modern power electronics applications is revolutionary because of its superior material properties including substantially better breakdown voltage, power density, device leakage, thermal conductivity, and switching speed. Integration of gate driver circuitry on the same chip, or in the same package, as the power device would significantly reduce the parasitic inductance, require far less thermal management paraphernalia, reduce cost and size of the system, and result in more efficient and reliable electrical and thermal performance of the system. The design of a gate driver circuit with good performance parameters in this completely new under-development SiC process is the key to realization of this ultimate goal of integrating a SiC gate driver with a SiC power MOSFET. The objective of this joint undertaking is integration of the designed gate driver into the electronic battery charger onboard the new plug-in hybrid Toyota Prius. The ultimate goal of the project is in-vehicle demonstration and commercialization. This high frequency charger will be five times more powerful with a 10 times size reduction and significant cost reduction on the long run. This thesis presents the design, layout, simulation, testing and verification of a gate driver circuit implemented and fabricated in the Cree SiC process. The gate driver has a rise time and fall time of 45 ns and 41 ns, respectively, when driving a SiC power MOSFET with peak current reaching around 3 A. At a switching frequency of 500 kHz, the gate driver power dissipation was around 6.5 W. The gate driver was operable over a temperature range between 25 °C and 420 °C with only slight degradation in performance parameters. This thesis will provide a comprehensive overview of gate driver design and testing phases with relevant background.

Highly Integrated Gate Drivers for Si and GaN Power Transistors

Highly Integrated Gate Drivers for Si and GaN Power Transistors PDF Author: Achim Seidel
Publisher: Springer Nature
ISBN: 3030689409
Category : Technology & Engineering
Languages : en
Pages : 137

Book Description
This book explores integrated gate drivers with emphasis on new gallium nitride (GaN) power transistors, which offer fast switching along with minimum switching losses. It serves as a comprehensive, all-in-one source for gate driver IC design, written in handbook style with systematic guidelines. The authors cover the full range from fundamentals to implementation details including topics like power stages, various kinds of gate drivers (resonant, non-resonant, current-source, voltage-source), gate drive schemes, driver supply, gate loop, gate driver power efficiency and comparison silicon versus GaN transistors. Solutions are presented on the system and circuit level for highly integrated gate drivers. Coverage includes miniaturization by higher integration of subfunctions onto the IC (buffer capacitors), as well as more efficient switching by a multi-level approach, which also improves robustness in case of extremely fast switching transitions. The discussion also includes a concept for robust operation in the highly relevant case that the gate driver is placed in distance to the power transistor. All results are widely applicable to achieve highly compact, energy efficient, and cost-effective power electronics solutions.​

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2668

Book Description


Design and Test of a Gate Driver with Variable Drive and Self-test Capability Implemented in a Silicon Carbide CMOS Process

Design and Test of a Gate Driver with Variable Drive and Self-test Capability Implemented in a Silicon Carbide CMOS Process PDF Author: Matthew Weston Barlow
Publisher:
ISBN:
Category : Heat resistant materials
Languages : en
Pages : 394

Book Description
Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits. The primary requirement to ensure rapid switching of power MOSFETs was a gate drive buffer capable of taking a control signal and driving the MOSFET gate with high current required. In this work, the first integrated SiC CMOS gate driver was developed in a 1.2 om SiC CMOS process to drive a SiC power MOSFET. The driver was designed for close integration inside a power module and exposure to high temperatures. The drive strength of the gate driver was controllable to allow for managing power MOSFET switching speed and potential drain voltage overshoot. Output transistor layouts were optimized using custom Python software in conjunction with existing design tool resources. A wafer-level test system was developed to identify yield issues in the gate driver output transistors. This method allowed for qualitative and quantitative evaluation of transistor leakage while the system was under probe. Wafer-level testing and results are presented. The gate driver was tested under high temperature operation up to 530 degrees celsius. An integrated module was built and tested to illustrate the capability of the gate driver to control a power MOSFET under load. The adjustable drive strength feature was successfully demonstrated.

Driving and Protection of High Density High Temperature Power Module for Electric Vehicle Application

Driving and Protection of High Density High Temperature Power Module for Electric Vehicle Application PDF Author: Zhiqiang Wang
Publisher:
ISBN:
Category : Electric vehicles
Languages : en
Pages : 167

Book Description
There has been an increasing trend for the commercialization of electric vehicles (EVs) to reduce greenhouse gas emissions and dependence on petroleum. However, a key technical barrier to their wide application is the development of high power density electric drive systems due to limited space within EVs. High temperature environment inherent in EVs further introduces a new level of complexity. Under high power density and high temperature operation, system reliability and safety also become important. This dissertation deals with the development of advanced driving and protection technologies for high temperature high density power module capable of operating under the harsh environment of electric vehicles, while ensuring system reliability and safety under short circuit conditions. Several related research topics will be discussed in this dissertation. First, an active gate driver (AGD) for IGBT modules is proposed to improve their overall switching performance. The proposed one has the capability of reducing the switching loss, delay time, and Miller plateau duration during turn-on and turn-off transient without sacrificing current and voltage stress. Second, a board-level integrated silicon carbide (SiC) MOSFET power module is developed for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI) based gate driver board is designed and fabricated through chip-on-board (COB) technique. Also, a 1200 V / 100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. Third, a comprehensive short circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs is presented. The short circuit capability of three types of commercial 1200 V SiC MOSFETs is tested under various conditions. The experimental short circuit behaviors are compared and analyzed through numerical thermal dynamic simulation. Finally, according to the short circuit ruggedness evaluation results, three short circuit protection methods are proposed to improve the reliability and overall cost of the SiC MOSFET based converter. A comparison is made in terms of fault response time, temperature dependent characteristics, and applications to help designers select a proper protection method.

The Use of Voltage Compliant Silicon on Insulator MESFETs for High Power and High Temperature Pulse Width Modulated Drive Circuits

The Use of Voltage Compliant Silicon on Insulator MESFETs for High Power and High Temperature Pulse Width Modulated Drive Circuits PDF Author: Nicholas Summers
Publisher:
ISBN:
Category : Junction transistors
Languages : en
Pages : 58

Book Description
Silicon Carbide (SiC) junction field effect transistors (JFETs) are ideal for switching high current, high voltage loads in high temperature environments. These devices require external drive circuits to generate pulse width modulated (PWM) signals switching from 0V to approximately 10V. Advanced CMOS microcontrollers are ideal for generating the PWM signals but are limited in output voltage due to their low breakdown voltage within the CMOS drive circuits. As a result, an intermediate buffer stage is required between the CMOS circuitry and the JFET. In this thesis, a discrete silicon-on-insulator (SOI) metal semiconductor field effect transistor (MESFET) was used to drive the gate of a SiC power JFET switching a 120V RMS AC supply into a 30Ω load. The wide operating temperature range and high breakdown voltage of up to 50V make the SOI MESFET ideal for power electronics in extreme environments. Characteristic curves for the MESFET were measured up to 250°C. To drive the JFET, the MESFET was DC biased and then driven by a 1.2V square wave PWM signal to switch the JFET gate from 0 to 10V at frequencies up to 20kHz. For simplicity, the 1.2V PWM square wave signal was provided by a 555 timer. The JFET gate drive circuit was measured at high temperatures up to 235°C. The circuit operated well at the high temperatures without any damage to the SOI MESFET or SiC JFET. The drive current of the JFET was limited by the duty cycle range of the 555 timer used. The SiC JFET drain current decreased with increased temperature. Due to the easy integration of MESFETs into SOI CMOS processes, MESFETs can be fabricated alongside MOSFETs without any changes in the process flow. This thesis demonstrates the feasibility of integrating a MESFET with CMOS PWM circuitry for a completely integrated SiC driver thus eliminating the need for the intermediate buffer stage.

A High-temperature Silicon-on-insulator Gate Driver IC for Silicon Carbide Junction Field Effect Transistor

A High-temperature Silicon-on-insulator Gate Driver IC for Silicon Carbide Junction Field Effect Transistor PDF Author: Edgar Santiago Cilio
Publisher:
ISBN:
Category : Power electronics
Languages : en
Pages : 196

Book Description


Gate Drive Design for Paralleled SiC MOSFETs in High Power Voltage Source Converters

Gate Drive Design for Paralleled SiC MOSFETs in High Power Voltage Source Converters PDF Author: Craig Timms
Publisher:
ISBN:
Category :
Languages : en
Pages : 104

Book Description
High power voltage source converters (VSC) are vital in applications ranging from industrial motor drives to renewable energy systems and electrified transportation. In order to achieve high power the semiconductor devices used in a VSC need to be paralleled, making the gate drive design complicated. The silicon carbide (SiC) MOSFET brings much benefit over similarly rated silicon (Si) devices but further complicates the gate drive design in a parallel environment due to it's fast switching capability and limited short-circuit withstand time. A gate driver design with proper accommodation of key issues for paralleled 1.7 kV SiC MOSFETs in high power VSC applications is developed. Three of the main issues are current imbalance, short-circuit protection, and cross-talk. By characterizing devices and supporting circuitry an understanding of constraints and sensitivities with regards to current balance between devices is developed for design optimization. A short-circuit detection scheme with adequate response time is employed and mitigation steps presented for issues arising from paralleling devices including large transient energy and instability. Cdv/dt induced gate voltage--cross-talk--is addressed by adapting a mitigation method to multiple devices. Finally, the gate driver is demonstrated in a full scale half-bridge using four devices per switch.