A Handbook of Statistical Analyses Using R, Second Edition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Handbook of Statistical Analyses Using R, Second Edition PDF full book. Access full book title A Handbook of Statistical Analyses Using R, Second Edition by Torsten Hothorn. Download full books in PDF and EPUB format.

A Handbook of Statistical Analyses Using R, Second Edition

A Handbook of Statistical Analyses Using R, Second Edition PDF Author: Torsten Hothorn
Publisher: Chapman and Hall/CRC
ISBN: 9781420079333
Category : Mathematics
Languages : en
Pages : 376

Book Description
A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.

A Handbook of Statistical Analyses Using R, Second Edition

A Handbook of Statistical Analyses Using R, Second Edition PDF Author: Torsten Hothorn
Publisher: Chapman and Hall/CRC
ISBN: 9781420079333
Category : Mathematics
Languages : en
Pages : 376

Book Description
A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.

A Handbook of Statistical Analyses using R, Third Edition

A Handbook of Statistical Analyses using R, Third Edition PDF Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 1482204584
Category : Mathematics
Languages : en
Pages : 454

Book Description
Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis. New to the Third Edition Three new chapters on quantile regression, missing values, and Bayesian inference Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables Additional exercises More detailed explanations of R code New section in each chapter summarizing the results of the analyses Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses Whether you’re a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.

A Handbook of Statistical Analyses Using S-PLUS

A Handbook of Statistical Analyses Using S-PLUS PDF Author: Brian S. Everitt
Publisher: CRC Press
ISBN: 9781420057492
Category : Computers
Languages : en
Pages : 260

Book Description
Since the first edition of this book was published, S-PLUS has evolved markedly with new methods of analysis, new graphical procedures, and a convenient graphical user interface (GUI). Today, S-PLUS is the statistical software of choice for many applied researchers in disciplines ranging from finance to medicine. Combining the command line languag

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Using R and RStudio for Data Management, Statistical Analysis, and Graphics

Using R and RStudio for Data Management, Statistical Analysis, and Graphics PDF Author: Nicholas J. Horton
Publisher: CRC Press
ISBN: 1482237377
Category : Mathematics
Languages : en
Pages : 280

Book Description
This book covers the aspects of R most often used by statistical analysts. Incorporating the use of RStudio and the latest R packages, this second edition offers new chapters on simulation, special topics, and case studies. It reorganizes and enhances the chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots. It also provides a detailed discussion of the philosophy and use of the knitr and markdown packages for R.

The Book of R

The Book of R PDF Author: Tilman M. Davies
Publisher: No Starch Press
ISBN: 1593276516
Category : Computers
Languages : en
Pages : 833

Book Description
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.

The R Book

The R Book PDF Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 9780470515068
Category : Mathematics
Languages : en
Pages : 953

Book Description
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.

Introductory Statistics with R

Introductory Statistics with R PDF Author: Peter Dalgaard
Publisher: Springer Science & Business Media
ISBN: 0387790543
Category : Mathematics
Languages : en
Pages : 370

Book Description
This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

A Handbook of Statistical Analyses Using R, Second Edition

A Handbook of Statistical Analyses Using R, Second Edition PDF Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 1420079336
Category : Mathematics
Languages : en
Pages : 383

Book Description
A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.

An Introduction to Statistical Learning

An Introduction to Statistical Learning PDF Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617

Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.